首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 715 毫秒
1.
Intracellular Ca2+ transients were measured with the use of a Ca2+-sensitive fluorescent indicator, fura-2, in neocortical and thalamic neurons in brain slices from control rats and rats with uncompensated streptozotocin-induced diabetes. The transients were evoked by high-potassium (50 mM)-induced membrane depolarization. The amplitude of depolarization-induced Ca2+ transients demonstrated a tendency to increase under diabetic conditions, beeing more expressed in cortical neurons compared with thalamic ones. The transients in cortical neurons from diabetic animals became also more susceptible to the blocking action of nifedipine (100μM) and less sensitive to Ni2+ (50μM), indicating that diabetic changes affect mostly Ca2+ transients triggered by high-voltage activated (L-type) calcium channels. The duration of a statistically significant increase was observed in the residual elevation of intracellular Ca2+ changes. However, a statistically significant increase was observed in the residual elevation of intracellular Ca2+ measured 60 sec after termination of membrane depolarization in both cortical and thalamic neurons, indicating alterations in the mechanisms that restore the resting level of Ca2+ in the cytosol. It is concluded that uncomensated insulin-dependent diabetes, which according to earlier data substantially alters calcium signalling in primary sensory neurons, also affects such signalling in the neurons of higher brain structures including the thalamus and cortex.  相似文献   

2.
Fedirko  N. V.  Vats  Yu. A.  Kruglikov  I. A.  Voitenko  N. V. 《Neurophysiology》2003,35(5):355-360
It is obvious that disruption of functions of the nervous system in diabetes mellitus is to a great extent related to the changes of synthesis or exocytosis of neurotransmitters. Since the mechanisms underlying exocytosis are similar in cells of different types, it may be assumed that studying these mechanisms in secretory cells will allow experimenters to obtain information on ways to control this process in neurons. Based on the supposition that changes in the activity of Ca2+-controlling systems in exocrine cells play an important role in functional disorders in the salivary glands in diabetes mellitus, we demonstrated, using the fura-2/AM dye, that the intracellular calcium concentration ([Ca2+] i ) in secretory cells of the above glands in rats with streptozotocin-induced diabetes mellitus (being in the resting state) is significantly increased (on average, by 65%). In our study, we showed that Ca2+-ATPases play an important role in the control of calcium homeostasis in secretory cells of salivary glands in diabetes mellitus. In particular, we demonstrated that the kinetic parameters of microsomal Ca2+-ATPases decreased: V 0, by 50 ± 7, and P max, by 52 ± 6%, on average. In diabetes mellitus, V max of Ca2+-ATPases also dropped significantly, by 47 ± 8 and 79 ± 9%, on average, for PMCA and SERCA, respectively. The decrease in K ATP was 71 ± 11% for SERCA and that in K Ca was 92 ± 3% for PMCA. We concluded that the activity of Ca2+-ATPases of secretory cells in diabetes mellitus is suppressed because of a decrease in the turnover and/or in the specific number of active molecules of the enzyme.  相似文献   

3.
Distal neuropathy is the most common complication of diabetes mellitus, and it is highly important to reveal the cellular mechanisms leading to its development. In our experiments, neurons of control and streptozotocin-treated diabetic rats were examined. Changes in the intracellular free calcium concentrations ([Ca2+] i ) were fluorometrically measured in primary and secondary nociceptive (dorsal root ganglion, DRG, and dorsal horn, DH, respectively) neurons. The [Ca2+] i elevation was induced by different agents, which can release calcium from the endoplasmic reticulum (ER) calcium stores. The amplitudes of calcium elevation induced by application of caffeine and ionomicine in DRG and DH neurons of diabetic rats were significantly lower, as compared with the control. Application of ATP and glutamate to a Ca-free extracellular solution induced calcium release from the IP3-sensitive store in DH neurons. Release of calcium from the IP3-sensitive ER calcium stores became significantly smaller in neurons from diabetic rats. Taken together, these data indicate that significant changes in the calcium regulating mechanisms of the ER develop under diabetes conditions.  相似文献   

4.
Molluscan neurons and muscle cells express transient (T-type like) and sustained LVA calcium channels, as well as transient and sustained HVA channels. In addition weakly voltage sensitive calcium channels are observed. In a number of cases toxin or dihydropyridine sensitivity justifies classification of the HVA currents in L, N or P-type categories. In many cases, however, pharmacological characterization is still preliminary. Characterization of novel toxins from molluscivorousConus snails may facilitate classification of molluscan calcium channels. Molluscan preparations have been very useful to study calcium dependent inactivation of calcium channels. Proposed mechanisms explain calcium dependent inactivation through direct interaction of Ca2+ with the channel, through dephosphorylation by calcium dependent phosphatases or through calcium dependent disruption of connections with the cytoskeleton. Transmitter modulation operating through various second messenger mediated pathways is well documented. In general, phosphorylation through PKA, cGMP dependent PK or PKC facilitates the calcium channels, while putative direct G-protein action inhibits the channels. Ca2+ and cGMP may inhibit the channels through activation of phosphodiesterases or phosphatases. Detailed evidence has been provided on the role of sustained LVA channels in pacemaking and the generation of firing patterns, and on the role of HVA channels in the dynamic changes in action potentials during spiking, the regulation of the release of transmitters and hormones, and the regulation of growth cone behavior and neurite outgrowth. The accessibility of molluscan preparations (e.g. the squid giant synapse for excitation release studies,Helisoma B5 neuron for neurite and synapse formation) and the large body of knowledge on electrophysiological properties and functional connections of identified molluscan neurons (e.g. sensory neurons, R15, egg laying hormone producing cells, etc.) creates valuable opportunities to increase the insight into the functional roles of calcium channels.  相似文献   

5.
Distal symmetrical sensory neuropathy in diabetes involves the dying back of axons, and the pathology equates with axonal dystrophy generated under conditions of aberrant Ca2+ signalling. Previous work has described abnormalities in Ca2+ homoeostasis in sensory and dorsal horn neurons acutely isolated from diabetic rodents. We extended this work by testing the hypothesis that sensory neurons exposed to long-term Type 1 diabetes in vivo would exhibit abnormal axonal Ca2+ homoeostasis and focused on the role of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). DRG (dorsal root ganglia) sensory neurons from age-matched normal and 3–5-month-old STZ (streptozotocin)-diabetic rats (an experimental model of Type 1 diabetes) were cultured. At 1–2 days in vitro an array of parameters were measured to investigate Ca2+ homoeostasis including (i) axonal levels of intracellular Ca2+, (ii) Ca2+ uptake by the ER (endoplasmic reticulum), (iii) assessment of Ca2+ signalling following a long-term thapsigargin-induced blockade of SERCA and (iv) determination of expression of ER mass and stress markers using immunocytochemistry and Western blotting. KCl- and caffeine-induced Ca2+ transients in axons were 2-fold lower in cultures of diabetic neurons compared with normal neurons indicative of reduced ER calcium loading. The rate of uptake of Ca2+ into the ER was reduced by 2-fold (P<0.05) in diabetic neurons, while markers for ER mass and ER stress were unchanged. Abnormalities in Ca2+ homoeostasis in diabetic neurons could be mimicked via long-term inhibition of SERCA in normal neurons. In summary, axons of neurons from diabetic rats exhibited aberrant Ca2+ homoeo<1?show=[fo]?>stasis possibly triggered by sub-optimal SERCA activity that could contribute to the distal axonopathy observed in diabetes.  相似文献   

6.
The neonicotinoid insecticide imidacloprid is an agonist on insect nicotinic acetylcholine receptors (nAChRs). We utilised fura-2-based calcium imaging to investigate the actions of imidacloprid on cultured GFP-tagged cholinergic neurons from the third instar larvae of the genetic model organism Drosophila melanogaster. We demonstrate dose-dependent increases in intracellular calcium ([Ca2+]i) in cholinergic neurons upon application of imidacloprid (10 nM–100 μM) that are blocked by nAChR antagonists mecamylamine (10 μM) and α-bungarotoxin (α-BTX, 1 μM). When compared to other (untagged) neurons, cholinergic neurons respond to lower concentrations of imidacloprid (10–100 nM) and exhibit larger amplitude responses to higher (1–100 μM) concentrations of imidacloprid. Although imidacloprid acts via nAChRs, increases in [Ca2+]i also involve voltage-gated calcium channels (VGCCs) in both groups of neurons. Thus, we demonstrate that cholinergic neurons express nAChRs that are highly sensitive to imidacloprid, and demonstrate a role for VGCCs in amplifying imidacloprid-induced increases in [Ca2+]i.  相似文献   

7.
Summary 1. The pathogenesis of diabetic neuropathy is a complex phenomenon, the mechanisms of which are not fully understood. Our previous studies have shown that the intracellular calcium signaling is impaired in primary and secondary nociceptive neurons in rats with streptozotocin (STZ)-induced diabetes. Here, we investigated the effect of prolonged treatment with the L-type calcium channel blocker nimodipine on diabetes-induced changes in neuronal calcium signaling and pain sensitivity.2. Diabetes was induced in young rats (21 p.d.) by a streptozotocin injection. After 3 weeks of diabetes development, the rats were treated with nimodipine for another 3 weeks. The effect of nimodipine treatment on calcium homeostasis in nociceptive dorsal root ganglion neurons (DRG) and substantia gelatinosa (SG) neurons of the spinal cord slices was examined with fluorescent imaging technique.3. Nimodipine treatment was not able to normalize elevated resting intracellular calcium ([Ca2+] i ) levels in small DRG neurons. However, it was able to restore impaired Ca2+ release from the ER, induced by either activation of ryanodine receptors or by receptor-independent mechanism in both DRG and SG neurons.4. The beneficiary effects of nimodipine treatment on [Ca2+] i signaling were paralleled with the reversal of diabetes-induced thermal hypoalgesia and normalization of the acute phase of the response to formalin injection. Nimodipine treatment was also able to shorten the duration of the tonic phase of formalin response to the control values.5. To separate vasodilating effect of nimodipine Biessels et al., (Brain Res. 1035:86–93) from its effect on neuronal Ca2+ channels, a group of STZ-diabetic rats was treated with vasodilator – enalapril. Enalapril treatment also have some beneficial effect on normalizing Ca2+ release from the ER, however, it was far less explicit than the normalizing effect of nimodipine. Effect of enalapril treatment on nociceptive behavioral responses was also much less pronounced. It partially reversed diabetes-induced thermal hypoalgesia, but did not change the characteristics of the response to formalin injection.6. The results of this study suggest that chronic nimodipine treatment may be effective in restoring diabetes-impaired neuronal calcium homeostasis as well as reduction of diabetes-induced thermal hypoalgesia and noxious stimuli responses. The nimodipine effect is mediated through a direct neuronal action combined with some vascular mechanism.  相似文献   

8.
Using indo-1- and fura-2-based microfluorometry for measuring the cytoplasmic free calcium concentration ([Ca2+] in ), the properties of caffeine-induced Ca2+ release from internal stores were studied in rat cultured central and peripheral neurons, including dorsal root ganglion (DRG) neurons, neurons from then. cuneatus, CA1 and CA3 hippocampal regions, and pyramidal neocortical neurons. Under resting conditions, the Ca2+ content of internal stores in DRG neurons was high enough to produce caffeine-triggered [Ca2+] in transients. Prolonged exposure of caffeine depleted the caffeine-sensitive stores of releasable Ca2+; the degree of this depletion depended on caffeine concentration. The depletion of the caffeine-sensitive internal stores to some extent was linked to calcium extrusion via La3+-sensitive plasmalemmal Ca2+-ATPases. Caffeine-induced Ca2+ release deprived internal stores in DRG neurons, but they refilled themselves spontaneously within 10 min. Pharmacological manipulation with caffeine-sensitive stores interferred with the depolarization-induced [Ca2+] in transients. In the presence of low caffeine concentration (0.5–1.0 mM) in the extracellular solution, the rate of rise of the depolarization-triggered [Ca2+] in transients significantly increased (by a factor of 2.15 ± 0.29) suggesting the occurrence of Ca2+-induced Ca2+ release. When the caffeine-sensitive stores were emptied by prolonged application of caffeine, the amplitude and rate of rise of the depolarization-induced [Ca2+] in transients decreased. These findings suggest the involvement of internal caffeine-sensitive calcium stores in generation of calcium signal in sensory neurons. In contrast, in all types of central neurons tested the resting Ca2+ content of internal stores was low, but the stores could be charged by transmembrane Ca2+ entry through voltage-operated calcium channels. After charging, the stores in central neurons spontaneously lost releasable calcium content and within 10 min they became completely empty again. We suggest that internal Ca2+ stores in peripheral and central neurons, although having similar pharmacological characteristics, handle Ca2+ ions in a different manner. Calcium stores in sensory neurons are continuously filled by releasable calcium and after discharging they can be spontaneously refilled, whereas in central neurons internal calcium stores can be charged by releasable calcium only transiently. Caffeine-evoked [Ca2+] in transients in all types of neurons were effectively blocked by 10 mM ryanodine, 5 mM procaine, 10 mM dantrolene, or 0.5 mM Ba2+, thus sharing the basic properties of the Ca2+-induced Ca2+ release from endoplasmic reticulum.Neirofiziologiya/Neurophysiology, Vol. 26, No. 1, pp. 16–25, January–February, 1994.  相似文献   

9.
Effects of ryanodine on calcium transients evoked by depolarization of external membrane under voltage clamp conditions or by a train of action potentials under current clamp conditions were studied on isolated dorsal root ganglion neurons of newborn rats. In 70% neurons tested, ryanodine, a blocker of Ca2+-induced Ca2+ release from endoplasmic reticulum, significantly decreased the amplitude of calcium transients. The data obtained indicate that the Ca2+-induced Ca2+ release plays an important role for calcium signal generation in a subpopulation of sensory neurons.Neirofiziologiya/Neurophysiology, Vol. 26, No. 6, pp. 420–422, November–December, 1994.  相似文献   

10.
Numerous investigations indicate thatdiabetes mellitus is associated with pronounced changes in calcium homeostasis, which in turn lead to substantial complications in most systemic functions. However, similar combined investigations of possible alterations in calcium signalling in the nerve cells are lacking, although pathological changes in nervous functions, including paresthesia and increased pain sensitivity, are common complications ofdiabetes mellitus in humans. Therefore, we studied the changes in calcium homeostasis in sensory neurons of mice with streptozotocin (STZ)-induced and genetically determineddiabetes mellitus.  相似文献   

11.
Fedirko  N.  Vats  Yu.  Kruglikov  I.  Voitenko  N. 《Neurophysiology》2004,36(3):169-173
In a rat model of streptozotocin (STZ)-induced diabetes, we earlier showed that under these conditions the concentration of free cytosolic Ca2+ in input neurons of the nociceptive system increases, Ca2+ signals are prolonged, while Ca2+ release from intracellular calcium stores decreases. The aim of our study was to test the hypothesis that changes in the activities of Ca2+,Mg2+-ATPases of the endoplasmic reticulum (SERCA) and plasmalemma (PMCA) could be responsible for diabetes-induced disorders of calcium homeostasis in nociceptive neurons. We measured the Ca2+,Mg2+-ATPase activities in microsomal fractions obtained from tissues of the dorsal root ganglia (DRG) and spinal dorsal horn (DH) of control rats and rats with experimentally induced diabetes. The integral specific Ca2+,Mg2+-ATPase activity in microsomes from diabetic rats was lower than that in the control group. The activity of SERCA in samples of DRG and DH of diabetic rats was reduced by 50 ± 8 and 48 ± 12%, respectively, as compared with the control (P < 0.01). At the same time, the activity of PMCA decreased by 63 ± 6% in DRG and by 60 ± 9% in DH samples (P < 0.01). We conclude that diabetic polyneuropathy is associated with the reduction of the rate of recovery of the Ca2+ level in the cytosol of DRG and DH neurons due to down-regulation of the SERCA and PMCA activities.  相似文献   

12.
13.
Experiments were carried out on isolated neurons of the thalamic nucleus lateralis dorsalis (LD) from 12-day-old rats. According to the morphological characteristics, LD neurons were classified as relay thalamo-cortical units and interneurons. The concentration of free Ca2+ ions in the cytoplasm ([Ca2+] i ) was measured by a fluorescent calcium indicator, fura-2AM. Application of 30 mM caffeine caused a transient change in the [Ca2+] i in 8 of 15 and in 6 of 11 of the thalamo-cortical units and interneurons under study, respectively. After stimulation of a cell with application of 50 mM KCl, a caffeine-induced increase in the [Ca2+] i was observed in all tested neurons. To study the contribution of Ca2+-induced Ca2+ release (CICR) to the calcium transient evoked by depolarization of the neuronal membrane, caffeine in a subthreshold concentration was pre-applied. After 50 mM KCl had been added to the medium following pre-application of 0.5 mM caffeine, the calcium transient amplitude in thalamo-cortical neurons increased by 51 ± 7% (n = 16). In interneurons this effect was not observed (n = 11). The data obtained allow us to hypothesize that CICR contributes to the depolarization-evoked calcium transient only in the relay (thalamo-cortical) neurons. Differences in the pattern of calcium signalling, which were detected in two types of neurons of the thalamic LD, can be a factor determining distinctions in the physiological characteristics of these neurons.  相似文献   

14.
Summary Equinatoxin Il is a 20-kDa basic protein isolated from the sea anemoneActinia equina. The aim of our work was to investigate the primary molecular basis for the cytotoxic effects of equinatoxin II in two model systems: single bovine lactotrophs and planar lipid bilayers. Previous work has shown that equinatoxin II produces rapid changes in cell morphology, which are dependent on external calcium. It has also been reported that addition of equinatoxin II increases membrane electrical conductance, which suggests that the cytotoxic action of equinatoxin II involves an increase in the permeability of membranes to Ca2+. Extensive changes in cytosolic Ca2+ activity are thought to invoke irreversible changes in cell physiology and morphology. In this paper, we show that morphological changes brought about by equinatoxin II in bovine lactotrophs are associated with a rapid rise in cytosolic Ca2+ activity, monitored with a fura-2 video imaging apparatus. Moreover, incorporation of equinatoxin II into planar lipid bilayers produces Ca2+ permeable ion channels. This suggests that the mode of equinatoxin II cytotoxicity involves the formation of cation (Ca2+) permeable channels in cell membranes.  相似文献   

15.
Participation of different calcium-regulating mechanisms in the formation of intracellular calcium signals in rat primary sensory neurons was studied using two-wavelength fluorescent microscopy. Mitochondria were shown to be the most powerful intracellular calcium-regulating structures in the investigated neurons. These organelles were involved in the modulation of calcium signals induced either by Ca2+ entry from the extracellular medium or by Ca2+ release from endoplasmic reticulum (ER). Analysis of the mitochondrial calcium exchange showed that the efficiency of mitochondria depended on whether calcium entered the cytosol from ER or from the extracellular solution. Depletion of ER by activation of ryanodine-sensitive, inositol-3-phosphate-sensitive receptors of ER or by activation of the leak channels via the block of ATPases in ER activated the store-operated calcium entry from the extracellular medium to cytosol. The kinetics of the rising phase of these Ca2+ transients depended on the way of ER depletion. This allows suggesting the existence of different activation mechanisms for the studied signals. The block of the mitochondrial calcium uniporter resulted in a rapid recovery of the intracellular calcium concentration after the Ca2+ transient induced by store-operated calcium influx. We conclude that mitochondrial calcium uptake can prevent calcium-dependent inactivation of store-operated calcium channels.  相似文献   

16.
The dynamics of intracellular Ca2+ signal in response to NMDA (N-methyl-D-aspartate, 30 μM) or KA (kainite, 30 μM), its dependence on extracellular Ca2+ and the mechanisms of KA-triggered Ca2+ entry into neurons have been tested in neurons of rat cortical primary cultures. The level of intracellular free Ca2+ concentrations ([Ca2+] i ) was evaluated on Leica SP5 MF confocal microscope using Fluo-3 fluorescent dye, which resolves changes in [Ca2+] i in the micromolar range. The dynamics of [Ca2+] i increase in response to NMDA and KA was different but in both cases the [Ca2+] i increase required the presence of Ca2+ in the extracellular solution. The neuronal population was found to be heterogeneous, based on the response to KA applied together with either L-type calcium channel blocker nifedipine (3 μM) or IEM-1460 (3 μM), a blocker of Ca2+-permeable AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) lacking GluR2 subunit. Experiments exhibited three types of calcium responses, characteristically belonging to interneurons (expressing Ca2+-permeable AMPAR), pyramidal neurons (with AMPAR containing GluR2, making them impermeable to Ca2+), and intermediate type of cells expressing both AMPAR types. Thus, we have demonstrated the role of AMPAR and L-type calcium channels in KA-triggered Ca2+ entry into neurons. The dynamics of [Ca2+] i during the KA treatment was shown to depend on subunit composition of particular AMPAR subtype expressed in neurons. The data suggest that neuronal types existing in adult cortical tissue are probably presented in primary culture, too.  相似文献   

17.
Synaptically activated postsynaptic [Ca2+]i increases occur through three main pathways: Ca2+ entry through voltage-gated Ca2+ channels, Ca2+ entry through ligand-gated channels, and Ca2+ release from internal stores. The first two pathways have been studied intensively; release from stores has been the subject of more recent investigations.Ca2+ release from stores in CNS neurons primarily occurs as a result of IP3 mobilized by activation of metabotropic glutamatergic and/or cholingergic receptors coupled to PLC. Ca2+ release is localized near spines in Purkinje cells and occurs as a wave in the primary apical dendrites of pyramidal cells in the hippocampus and cortex. The amplitude of the [Ca2+]i increase can reach several micromolar, significantly larger than the increase due to backpropagating spikes.The large amplitude, long duration, and unique location of the [Ca2+]i increases due to Ca2+ release from stores suggests that these increases can affect specific downstream signaling mechanisms in neurons.  相似文献   

18.
Involvement of extracellular Ca2+ in stomatal movement through the regulation of water channels was investigated in broad bean (Vicia faba L.). Leaf peels were first incubated to open stomata, and then transferred to buffers in the presence of different CaCl2 concentrations. Stomatal status was observed under magnification and stomatal aperture (pore width/length) was measured. Stomatal closure was significantly induced and aperture oscillation occurred at lower extracellular concentrations of calcium ([Ca2+]ext), while at higher concentrations, no significant change in stomatal aperture was observed, which was similar to the response recorded with HgCl2. Lower [Ca2+]ext-induced stomatal closure could be reversed using depolarizing buffer. It is suggested that lower [Ca2+]ext regulates water channels through an indirect way and at higher concentrations, extracellular Ca2+ is involved in regulating stomatal aperture by directly influencing water channels to retard aperture change.  相似文献   

19.
Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8 weeks of diabetes development. Here we found that 6–7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca2 + signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca2 +]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca2 + signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes.  相似文献   

20.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号