首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
靶向基因-病毒治疗方法是近年来产生的一种较为有效的癌症生物治疗方法。但其癌症治疗效果仍需进一步提高。在该研究工作中,通过联合使用临床神经治疗药物硫利达嗪(thior_idazine)与溶瘤腺病毒ZD55-TRAIL来增强对HeLa细胞的杀伤作用。通过MTT实验、倒置显微镜观察、结晶紫染色实验观察了联合使用thioridazine和ZD55-TRAIL对子宫颈癌细胞株HeLa细胞的毒性作用;使用Hoechst33342染色、流式细胞实验和Western blot实验检测了联合使用thioridazine和ZD55-TRAIL在引起HeLa细胞发生凋亡上的作用。结果表明,小分子药物thioridazine与病毒ZD55-TRAIL联合使用可以增强对HeLa细胞的杀伤作用,通过下调抗凋亡蛋白XIAP的水平,更显著地促进HeLa细胞发生凋亡。该研究首次报道了联合使用精神疾病药物thioridazine和ZD55-TRAIL对子宫颈癌细胞HeLa的抑制作用,可能是子宫颈癌治疗的一种有效方法。  相似文献   

2.
目的:探讨溶瘤腺病毒(ZD55-gene)作为载体携带外源抗癌基因(XAF1)抗肝癌移植瘤的生长及其安全性。方法:抽提溶瘤腺病毒ZD55-XAF1的基因组DNA,PCR扩增鉴定病毒;细菌平板培养和支原体检测试剂盒检测细胞有无细菌、支原体污染;通过荷瘤小鼠动物实验,观察溶瘤腺病毒ZD55-XAF1对肝癌移植瘤生长的抑制、小鼠的临床反应指标、血清肝毒性指标、各脏器组织中的病毒残留分布及病理切片观察。结果:细胞培养过程无细菌和支原体污染;较对照组,受试小鼠血清肝酶AST活性上升(P0.05),而ALT和ALP活性基本无变化(P0.05);PCR检测各脏器均有病毒基因组DNA存在;HE染色显示受试小鼠各脏器具有不同程度的损伤,病毒处理对肿瘤细胞具有明显的杀伤效果,而受试小鼠的临床反应并无明显异常。结论:溶瘤腺病毒ZD55-XAF1能够抑制肿瘤生长,杀死肿瘤细胞,对小鼠血清肝酶活性影响较小而对各脏器有不同程度的轻微损伤,作为癌症基因治疗载体有潜在的应用价值但其安全性还有待提高。  相似文献   

3.
应用分子克隆和同源重组技术构建双靶向溶瘤腺病毒MD55.分析MD55病毒在细胞中的复制能力,并用MTT和结晶紫方法检测MD55对肿瘤细胞和正常细胞生长的影响,West-ern印迹检测病毒感染后细胞中E1A蛋白和多聚ADP核糖聚合酶(PARP)片断的表达.结果显示,MD55能在MN/CA9阳性的肿瘤细胞SW620和OSRC-2中特异性表达E1A蛋白.并且在这些细胞中的复制能力和对这些细胞的杀伤性与对照病毒ZD55基本相同,而其在正常细胞中的复制能力很弱,对正常细胞的伤害很小;同时MD55可诱导肿瘤细胞SW620和OSRC-2的凋亡,而对正常细胞的凋亡无影响.实验结果表明双靶向溶瘤腺病毒MD55靶向性和安全性比单靶向病毒ZD55更高,有望成为一种很好的肿瘤靶向基因一病毒治疗载体.  相似文献   

4.
盐酸阿霉素(DOX)作为一种抗肿瘤抗生素,通过抑制癌细胞遗传物质的合成,对多种肿瘤均有杀伤作用,然而,其单独作用疗效有限,且加大剂量时其副作用较强。目前,携带抗癌基因的溶瘤腺病毒在肿瘤治疗中的作用日渐显现,溶瘤腺病毒ZD55-Trail联合DOX治疗肝癌的研究鲜有报道。通过MTT和结晶紫染色试验检测DOX药物处理对肝癌细胞系Bel-7404存活率的变化情况;Hoechst33342染色和流式细胞术检测肝癌细胞的凋亡;Western blot检测Trail蛋白和凋亡相关蛋白的表达;免疫荧光和流式细胞术检测凋亡相关受体表达的情况。结果显示,ZD55-Trail与DOX联合使用能够有效抑制肝癌细胞增长并诱导其凋亡,并且联合处理能增加Trail受体DR4和DR5的表达。初步探讨了DOX与ZD55-Trail两者协同诱导肝癌细胞凋亡的机制,为利用ZD55-Trail与DOX联合治疗肝癌提供依据。  相似文献   

5.
溶瘤腺病毒是一种改造过的能够选择性地在肿瘤细胞中复制,并能够杀死肿瘤细胞的腺病毒,目前已经应用于肿瘤治疗中。但是因为肿瘤的复杂性以及高突变性,所以提高溶瘤腺病毒对肿瘤的有效性,选择性和安全性成为了主要的研究方向。能够在体内正常表达shRNA、细胞因子、自杀基因、基质修饰蛋白等治疗性基因的溶瘤腺病毒具有比单纯的溶瘤腺病毒更强的抗肿瘤活性。而具有肿瘤特异性启动子,尤其是双调控启动子的溶瘤腺病毒对肿瘤细胞具有更强的选择性杀伤作用。另外用脂质体、PEG聚合物、纳米颗粒、多肽等包裹的溶瘤腺病毒能够减少病毒的免疫原性以及对肝脏的毒性,增强了全身给药途径的抗肿瘤活性。特别是用PEG连上抗体、小肽、细胞因子和配体,能显著提高溶瘤腺病毒的选择性。因此,整合病毒载体与非病毒载体的优点并与免疫治疗相结合,是一个很有希望的提高病毒靶向治疗效果的策略。  相似文献   

6.
溶瘤腺病毒能够靶向和杀死癌症干细胞,被认为是一种很有前景的抗癌药物.已有研究表明,溶瘤腺病毒ZD55能够靶向肝癌,并且表现出明显的细胞毒性效应.然而,其对肝癌干细胞是否具有同样地杀伤效力仍需进一步探讨.利用悬浮培养富集类肝癌干细胞,并验证其肝癌干细胞的特征.进一步通过MTT、结晶紫染色、Hoechst染色、Western blot和流式细胞术等检测ZD55对类肝癌干细胞的细胞存活率、凋亡诱导和病理效应等.结果发现,悬浮培养的类肝癌干细胞具有自我更新和分化能力、高表达干细胞相关转录因子(如NANOG和OCT4)、处于静息状态和具有耐药性等特性,溶瘤腺病毒处理后表现出明显的细胞毒性效应和杀伤特性,类肝癌干细胞的最低生存率仅为26.7%.ZD55能够非常明显地诱导类肝癌干细胞凋亡,其凋亡率最高达到60%.因此,ZD55可能会成为靶向肝癌干细胞的一种很有前景的治疗药物,对肝癌的临床治疗具有一定的应用价值.  相似文献   

7.
钟江 《微生物与感染》2004,27(6):1-4,10
研究发现有些病毒具有特异性感染并杀伤肿瘤细胞的能力,这类病毒被称为“溶瘤病毒”。天然的溶瘤病毒有细小病毒、呼肠孤病毒、新城疫病毒、水疱性口炎病毒、麻疹病毒等。有些病毒缺失一些病毒基因的突变体,具有溶瘤病毒的特性,其中包括腺病毒、疱疹病毒和甲型流感病毒。通过病毒基因工程可以进一步提高溶瘤病毒的安全性和杀伤肿瘤细胞的效果。一系列体外、动物模型和临床的试验证实,不少溶瘤病毒具有良好的安全性和抑制肿瘤的能力。  相似文献   

8.
目的:构建表达超抗原金黄色葡萄球菌肠毒素A基因的双调控选择增殖型溶瘤腺病毒SG502-SEA及对照组携带超抗原SEA基因的非增殖溶瘤腺病毒DC318-SEA,并探讨其潜在的抗膀胱肿瘤作用.方法:将超抗原SEA基因片段经SpeⅠ和SalⅠ双酶切后,克隆入非增殖溶瘤腺病毒载体pSG218中,将鉴定正确的腺病毒载体命名为pDC318-SEA.同样方法将超抗原SEA基因片段克隆入双调控特异性增殖溶瘤腺病毒载体pSG502中,将鉴定正确的腺病毒载体命名为pSG502-SEA.将以上两种携带SEA基因的病毒载体与病毒骨架质粒PPE3-ccdB共转染293细胞,9~14d出现病毒空斑,经过3次病毒空斑纯化,提取腺病毒DNA,应用PCR进行鉴定,经鉴定正确的腺病毒分别命名为DC318 - SEA和SG502-SEA.大量扩增后,氯化铯梯度离心纯化腺病毒,测病毒滴度.结果:经PCR及酶切鉴定,SEA基因成功克隆到两病毒载体中,可以表达SEA基因,且病毒滴度为2.5×101pfu/ml.结论:成功构建表达超抗原SEA基因的双调控增殖型溶瘤腺病毒SG502-SEA及对照组携带超抗原SEA基因的非增殖溶瘤腺病毒DC318-SEA,为下一步抗膀胱肿瘤体内外实验奠定基础.  相似文献   

9.
研究组蛋白去乙酰化酶抑制剂SAHA联合溶瘤腺病毒ZD55-IL-24对结肠癌SW480细胞的体外杀伤作用。采用MTT法、结晶紫实验检测NSAHA、ZD55-IL-24以及二者联合使用对结肠癌细胞株SW480及人正常肺上皮细胞株Beas-2B的增殖抑制作用;利用Hoechst33342染色对经各种处理的细胞进行凋亡形态学观察,采用流式细胞术对凋亡进行量化;通过Westernblot法在蛋白水平上检测sw480细胞中IL-24的表达情况。结果显示SAHA与ZD55-IL-24联合处理对SW480的增殖抑制作用明显优于两者单独使用。10MoI病毒ZD55-IL-24与0.5gmol/LSAHA联合作用4天,SW480细胞存活率仅为12%,明显低于10MOI病毒单独处理组细胞的存活率(40%,P〈O.05)。然而,正常细胞对于联合给药显示出良好的耐受性。Hoechst33342染色和流式细胞术结果也表明联合处理组的sw480细胞凋亡特征更明显。此外,IL-24在ZD55-IL-24病毒单独感染组及病毒与药物联合组的SW480细胞中均能有效表达。  相似文献   

10.
溶瘤腺病毒是通过遗传工程改造的腺病毒,具有溶细胞复制周期的特性和特异靶向肿瘤细胞和裂解肿瘤细胞的功能。溶瘤腺病毒通过复制、释放子代病毒感染邻近肿瘤细胞。现在对腺病毒生活周期的认识水平,可以对其基因组进行改造从而使其特异性裂解肿瘤细胞而不杀伤正常细胞,并且构建了多种溶瘤腺病毒。本文主要概述了溶瘤腺病毒的三种构建策略:剔除腺病毒在正常细胞中复制所必需而在肿瘤细胞中不需要的某些基因;利用肿瘤特异性启动子控制病毒复制所必需的基因;对腺病毒衣壳蛋白进行基因修饰,达到特异性结合肿瘤细胞的目的。  相似文献   

11.
The ZD55-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and ZD55-interleukin (IL)-24 were constructed by inserting TRAIL or IL-24 gene separately into the oncolytic adenovirus named ZD55 (with adenovirus E1B-55kD deletion). The resulting ZD55-TRAIL and ZD55-IL-24 were used in combination to treat xenograft tumors in nude mice model. The results showed that it can not only completely eliminate BEL7404 hepatoma xenograft but also have excellent antitumor effect against gaster, lung, prostate, and breast carcinomas. It was also found that ZD55-TRAIL could not only suppress the tumor growth promoting effect by ZD55-IL-24 at lower dosage, but also substantially reduce the cancer cell viability in their combined use. This is because ZD55-IL-24 and ZD55-TRAIL could mutually enhance each other's antitumor effect greatly. All these findings conspicuously showed the synergistic antitumor effect of TRAIL and IL-24, which is also the reason for the antitumor effect by the combined use of TRAIL and IL-24 in vitro and also in vivo.  相似文献   

12.
Chemoresistance and side effects are considered as the major obstacles in cisplatin-based chemotherapy of various human malignant tumors. Conjugation with cancer-specific apoptotic stimuli TRAIL or typical viro-agent ONYX-015 has been extensively investigated to enhance the antitumor activity of cisplatin. In this study, we presented a novel chemo-gene-virotherapeutic strategy to further improve the toxic effects in cancer cells and reduce the damage in normal cells. Here, an oncolytic adenoviral vector (ZD55), with a deletion of E1B 55-kDa gene, was employed to express the therapeutic TRAIL gene by constructing a recombinant virus ZD55-TRAIL. Exogenous gene delivery efficacy was determined by both in vitro and in vivo experiments and enhanced cytotoxicity of combined treatment of ZD55-TRAIL with cisplatin was evaluated in several cancer cell lines. Moreover, negative effects on normal cells have been tested in both L-02 and MRC-5 cell lines by MTT assay and apoptotic cell staining. According to our observation, combination of ZD55-TRAIL with cisplatin exhibited an apparent synergistic cytotoxicity in cancer cells, yet significantly abolished the negative toxicity in normal cells by reducing the dosage. Thus, a novel chemo-gene-virotherapeutic strategy for cancer therapy was proposed.  相似文献   

13.
Cancer Targeting Gene-Viro-Therapy (CTGVT) is a promising cancer therapeutical strategy that strengthens the anti-tumour effect of oncolytic virus by expressing inserted foreign anti-tumour genes. In this work, we constructed a novel adenoviral vector controlled by the tumour-specific survivin promoter on the basis of the ZD55 vector, which is an E1B55KD gene deleted vector we previously constructed. Compared with the original ZD55 vector, this new adenoviral vector (ZD55SP/E1A) showed much better ability of replication and reporter gene expression. We then combined anti-tumour gene interleukine-24 (IL-24) with an RNA polymerase III-dependent U6 promoter driving short hairpin RNA (shRNA) that targets M-phase phosphoprotein 1 (MPHOSPH1, a newly identified oncogene) by inserting the IL-24 and the shRNA of MPHOSPH1 (shMPP1) expression cassettes into the new ZD55SP/E1A vector. Our results demonstrated excellent anti-tumour effect of ZD55SP/E1A-IL-24-shMPP1 in vitro on multiple cancer cell lines such as lung cancer, liver cancer and ovarian caner. At high multiplicity-of-infection (MOI), ZD55SP/E1A-IL-24-shMPP1 triggered post-mitotic apoptosis in cancer cells by inducing prolonged mitotic arrest; while at low MOI, senescence was induced. More importantly, ZD55SP/E1A-IL-24-shMPP1 also showed excellent anti-tumour effects in vivo on SW620 xenograft nude mice. In conclusion, our strategy of constructing an IL-24 and shMPP1 dual gene expressing oncolytic adenoviral vector, which is regulated by the survivin promoter and E1B55KD deletion, could be a promising method of cancer gene therapy.  相似文献   

14.
Safety and efficiency are equally important to be considered in developing oncolytic adenovirus. Previously, we have reported that ZD55, an oncolytic adenovirus with the deletion of E1B-55K gene, exhibited potent antitumor activity. In this study, to improve the safety of ZD55, we utilized MUC1 promoter to replace the native promoter of E1A on the basis of ZD55, and generated a double-regulated adenovirus, named MUD55. Our data demonstrated that the expression of early and late genes of MUD55 was both reduced in MUC1-negative cells, resulting in its stricter glandular-tumor selective progeny production. The cytopathic effect of MUD55 was about 10-fold lower than mono-regulated adenovirus ZD55 or Ad.MUC1 in normal cells and not obviously attenuated in glandular tumor cells. Moreover, MUD55 showed the least liver toxicity when administrated by intravenous injection in nude mice. These results indicate that MUD55 could be a promising candidate for the treatment of adenocarcinoma.  相似文献   

15.
Dichloroacetate (DCA) is a metabolic modulator for the treatment of lactic acidosis and inherited mitochondrial diseases. A recent study showed that DCA treatment could induce apoptosis in many kinds of tumor cell lines via mitochondrial apoptotic pathway while sparing normal cells. ONYX-015 (dl 1520) is one of the oncolytic adenoviruses developed by the deletion of E1B-55kD gene of type 5 adenoviral DNA, and it replicates efficiently and selectively in tumor cells. ZD55-IL-24, an E1B-55kD deleted oncolytic adenovirus carrying interleukin-24 (IL-24, also called melanoma differentiation associated gene-7), had showed potent antitumor efficacy in a variety of tumor cells and exerted no apparent toxicity on normal cells. Given both the good therapeutic effect and low toxicity of these agents, here we investigated whether DCA in combination with ZD55-IL-24 or ONYX-015 could have more efficient antitumor activity in vitro experiments. Therefore, we tested the cytotoxicity of combination therapy in normal hepatic cells L-02 and QSG-7701 using the MTT assay. Our results showed that DCA combined with ONYX-015 or ZD55-IL-24 exhibited more potent antitumor activity than DCA or virus alone, and the combination treatment did not have superimposed toxicities in normal cells. Thus, a novel combination therapy associating oncolytic adenoviruses with relatively low toxic drug without severe side effects was proposed.  相似文献   

16.
Targeting gene-virotherapy of cancer   总被引:15,自引:0,他引:15  
Liu XY  Gu JF 《Cell research》2006,16(1):25-30
Our purpose is to completely elimination of xenograft tumor in animal tumor model in order to work out a protocal for the cure of patient. Gene therapy and viral therapy for cancer have got some therapeutic effects, but both have no great breakthrough. Therefore, we worked out a new strategy called Targeting Gene-Virotherapy of Cancer which is a combination of the advantage of gene therapy and virotherapy. This new strategy has stronger antitumor effect than either of them alone. A tumor specific replicative adenovirus vector ZD55 (E1B 55KD deleted Adv.) which is similar to ONYX-015 in targeting fuction but significant different in construction was produced and various single therapeutic gene was inserted into ZD55. Now such a conception as Targeting Gene-Virotherapy of Cancer was raised and systemically studied before, although there are some works on ONYX-015-tk, -cd or cd/-tk etc. separately. The antitumor effect of ZD55-Gene (for example IL-24 gene) is much better than ZD55 (virotherapy) alone and hundred fold high than that of Ad-IL-24 (gene therapy) alone. ZD55-IL-24 was in preclinal studying in the ZD55-IL-24 therapy, completely elimination of tumor mass was occurred in some mice but not in all mice, that means one gene was not effictive enough to eliminate all the tumor mass in all mice. Therefore two genes with compensative or synergetic effect were inserted into ZD55 separately and used in combination. This strategy was called Targeting Dual Gene-Virotherapy of Cancer (with PCT patent). Then much better results were obtained and all the xenograft tumor masses were completely eliminated in all mice, if two suitable genes were chosen. On the basis of the initiation of two gene results, it was thought about that using two tumors promoter to control the virus vector will be better for the targeting effect and the safty of the drugs. Then double tumor controlled virus vector harboring two genes for cancer therapy was worked out. Better results have been obtained and another patent has been applied. This antitumor strategy could be used to kill all the tumor cells completely in all mice with minimum damage to normal cells.  相似文献   

17.
Targeting gene-virotherapy of cancer and its prosperity   总被引:6,自引:0,他引:6  
Liu XY 《Cell research》2006,16(11):879-886
Gene and viral therapies for cancer have shown some therapeutic effects, but there has been a lack of real breakthrough. To achieve the goal of complete elimination of tumor xenograft in animal models, we have developed a new strategy called Targeting Gene-Virotherapy of Cancer, which aims to combine the advantages of both gene therapy and virotherapy. This new strategy has produced stronger anti-tumor effects than either gene or viral therapy alone. A tumorspecific replicative adenovirus vector, designated as ZD55, was constructed by deletion of the 55kDa E1B region of adenovirus. The resulting viral construct not only retains a similar function to ONYX-015 by specifically targeting p53 negative tumors, but also allows for the insertion of various therapeutic genes to form appropriate ZD55 derivatives due to the newly introduced cloning site, a task not feasible with the original ONYX-015 virus. We showed that the anti-tumor effect of one such derivative, ZD55-IL-24, is at least 100 times more potent than that of either ZD55 virotherapy or Ad-IL-24 gene therapy. Nevertheless, complete elimination of tumor mass by the use of ZD55-1L-24 was only observed in some but not all mice, indicating that one therapeutic gene was not sufficient to "cure" these mice. When genes with complementary or synergetic effects were separately cloned into the ZD55 vector and used in combination (designated as the Dual Gene Therapy strategy), much better results were obtained; and it was possible to achieve complete elimination of all the xenograft tumor masses in all mice if two suitable genes were chosen. More comprehensive studies based on this new strategy will likely lead to a protocol for clinical trial. Finally, the concept of Double Controlled Targeting Virus-Dual Gene Therapy for cancer treatment, and the implication of the recent progress in cancer stem cells are also discussed.  相似文献   

18.
Targeting gene-virotherapy for cancer   总被引:9,自引:0,他引:9  
Gene therapy and viral therapy for cancer have therapeutic effects, but there has been no significant breakthrough in these two forms of therapy. Therefore, a new strategy called “targeting gene-virotherapy”, which combines the advantages of gene therapy and viral therapy, has been formulated. This new therapy has stronger antitumor effects than either gene therapy or viral therapy. A tumor-specific replicative adenovirus vector ZD55 (E1B55KD deleted Adv.) was constructed and various single therapeutic genes were inserted into ZD55 to form ZD55-gene. These are the targeting gene-virotherapy genes. But experiments showed that a single gene was not effective in eliminating the tumor mass, and therefore two genes were separately inserted into ZD55. This strategy is called “targeting dual gene-virotherapy” (with PCT patent). Better results were obtained with this strategy, and all the xenograft tumor masses were completely eliminated in all mice when two suitable genes producing a synergetic or compensative effect were chosen. Twenty-six papers on these strategies have been published by researchers in our laboratory. Furthermore, an adenoviral vector with two targeting promoters harboring two antitumor genes has been constructed for cancer therapy. Promising results have been obtained with this adenoviral vector and another patent has been applied for. This antitumor strategy can be used to kill tumor cells completely with minimum damage to normal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号