首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The incorporation of effective and durable disease resistance is an important breeding objective for wheat improvement. The leaf rust resistance gene Lr34 and stripe rust resistance gene Yr18 are effective at the adult plant stage and have provided moderate levels of durable resistance to leaf rust caused by Puccinia triticina Eriks. and to stripe rust caused by Puccinia striiformis Westend. f. sp. tritici. These genes have not been separated by recombination and map to chromosome 7DS in wheat. In a population of 110 F7 lines derived from a Thatcher × Thatcher isogenic line with Lr34/Yr18, field resistance to leaf rust conferred by Lr34 and to stripe rust resistance conferred by Yr18 cosegregated with adult plant resistance to powdery mildew caused by Blumeria graminis (DC) EO Speer f. sp. tritici. Lr34 and Yr18 were previously shown to be associated with enhanced stem rust resistance and tolerance to barley yellow dwarf virus infection. This chromosomal region in wheat has now been linked with resistance to five different pathogens. The Lr34/Yr18 phenotypes and associated powdery mildew resistance were mapped to a single locus flanked by microsatellite loci Xgwm1220 and Xgwm295 on chromosome 7DS.  相似文献   

2.
Powdery mildew, caused by Blumeria graminis f. sp. tritici is a major disease of wheat (Triticum aestivum L.) that can be controlled by resistance breeding. The CIMMYT bread wheat line Saar is known for its good level of partial and race non-specific resistance, and the aim of this study was to map QTLs for resistance to powdery mildew in a population of 113 recombinant inbred lines from a cross between Saar and the susceptible line Avocet. The population was tested over 2 years in field trials at two locations in southeastern Norway and once in Beijing, China. SSR markers were screened for association with powdery mildew resistance in a bulked segregant analysis, and linkage maps were created based on selected SSR markers and supplemented with DArT genotyping. The most important QTLs for powdery mildew resistance derived from Saar were located on chromosomes 7DS and 1BL and corresponded to the adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29. A major QTL was also located on 4BL with resistance contributed by Avocet. Additional QTLs were detected at 3AS and 5AL in the Norwegian testing environments and at 5BS in Beijing. The population was also tested for leaf rust (caused by Puccinia triticina) and stripe rust (caused by P. striiformis f. sp. tritici) resistance and leaf tip necrosis in Mexico. QTLs for these traits were detected on 7DS and 1BL at the same positions as the QTLs for powdery mildew resistance, and confirmed the presence of Lr34/Yr18 and Lr46/Yr29 in Saar. The powdery mildew resistance gene at the Lr34/Yr18 locus has recently been named Pm38. The powdery mildew resistance gene at the Lr46/Yr29 locus is designated as Pm39.  相似文献   

3.
Spot blotch caused by Bipolaris sorokiniana is a major disease of wheat in warm and humid wheat growing regions of the world including south Asian countries such as India, Nepal and Bangladesh. The CIMMYT bread wheat line Saar which carries the leaf tip necrosis (LTN)-associated rust resistance genes Lr34 and Lr46 has exhibited a low level of spot blotch disease in field trials conducted in Asia and South America. One hundred and fourteen recombinant inbred lines (RILs) of Avocet (Susceptible) × Saar, were evaluated along with parents in two dates of sowing in India for 3 years (2007–2008 to 2009–2010) to identify quantitative trait loci (QTL) associated with spot blotch resistance, and to determine the potential association of Lr34 and Lr46 with resistance to this disease. Lr34 was found to constitute the main locus for spot blotch resistance, and explained as much as 55 % of the phenotypic variation in the mean disease data across the six environments. Based on the large effect, the spot blotch resistance at this locus has been given the gene designation Sb1. Two further, minor QTL were detected in the sub-population of RILs not containing Lr34. The first of these was located about 40 cM distal to Lr34 on 7DS, and the other corresponded to Lr46 on 1BL. A major implication for wheat breeding is that Lr34 and Lr46, which are widely used in wheat breeding to improve resistance to rust diseases and powdery mildew, also have a beneficial effect on spot blotch.  相似文献   

4.
Leaf rust (LR) and yellow rust (YR), caused by Puccinia triticina and Puccinia striiformis f. sp. tritici, respectively, are important diseases of wheat. Quaiu 3, a common wheat line developed at the International Maize and Wheat Improvement Center (CIMMYT), is immune to YR in Mexico despite seedling susceptibility to predominant races. Quaiu 3 also shows immunity to LR in field trials and is known to possess the race-specific gene Lr42. A mapping population of 182 recombinant inbred lines (RILs) was developed by crossing Quaiu 3 with susceptible Avocet-YrA and phenotyped with LR and YR in field trials for 2 years in Mexico. Quantitative trait loci (QTL) associated with YR and LR resistance in the RILs were identified using Diversity Arrays Technology and simple sequence repeat markers. A large-effect QTL on the long arm of chromosome 2D explained 49–54 % of the phenotypic variation in Quaiu 3 and was designated as Yr54. Two additional loci on 1BL and 3BS explained 8–17 % of the phenotypic variation for YR and coincided with previously characterized adult plant resistance (APR) genes Lr46/Yr29 and Sr2/Yr30, respectively. QTL on 1DS and 1BL corresponding to Lr42 and Lr46/Yr29, respectively, contributed 60–71 % of the variation for LR resistance. A locus on 3D associated with APR to both diseases explained up to 7 % of the phenotypic variance. Additional Avocet-YrA-derived minor QTL were also detected for YR on chromosomes 1A, 3D, 4A, and 6A. Yr54 is a newly characterized APR gene which can be combined with other genes by using closely linked molecular markers.  相似文献   

5.

Background

Septoria tritici blotch is an important leaf disease of European winter wheat. In our survey, we analyzed Septoria tritici blotch resistance in field trials with a large population of 1,055 elite hybrids and their 87 parental lines. Entries were fingerprinted with the 9 k SNP array. The accuracy of prediction of Septoria tritici blotch resistance achieved with different genome-wide mapping approaches was evaluated based on robust cross validation scenarios.

Results

Septoria tritici blotch disease severities were normally distributed, with genotypic variation being significantly (P < 0.01) larger than zero. The cross validation study revealed an absence of large effect QTL for additive and dominance effects. Application of genomic selection approaches particularly designed to tackle complex agronomic traits allowed to double the accuracy of prediction of Septoria tritici blotch resistance compared to calculation methods suited to detect QTL with large effects.

Conclusions

Our study revealed that Septoria tritici blotch resistance in European winter wheat is controlled by multiple loci with small effect size. This suggests that the currently achieved level of resistance in this collection is likely to be durable, as involvement of a high number of genes in a resistance trait reduces the risk of the resistance to be overcome by specific pathogen isolates or races.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-14-858) contains supplementary material, which is available to authorized users.  相似文献   

6.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

7.
Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat   总被引:2,自引:0,他引:2  
The common wheat cultivar Parula possesses a high level of slow rusting, adult plant resistance (APR) to all three rust diseases of wheat. Previous mapping studies using an Avocet-YrA/Parula recombinant inbred line (RIL) population showed that APR to leaf rust (Puccinia triticina) in Parula is governed by at least three independent slow rusting resistance genes: Lr34 on 7DS, Lr46 on 1BL, and a previously unknown gene on 7BL. The use of field rust reaction and flanking markers identified two F6 RILs, Arula1 and Arula2, from the above population that lacked Lr34 and Lr46 but carried the leaf rust resistance gene in 7BL, hereby designated Lr68. Arula1 and Arula2 were crossed with Apav, a highly susceptible line from the cross Avocet-YrA/Pavon 76, and 396 F4-derived F5 RILs were developed for mapping Lr68. The RILs were phenotyped for leaf rust resistance for over 2 years in Ciudad Obregon, Mexico, with a mixture of P. triticina races MBJ/SP and MCJ/SP. Close genetic linkages with several DNA markers on 7BL were established using 367 RILs; Psy1-1 and gwm146 flanked Lr68 and were estimated at 0.5 and 0.6 cM, respectively. The relationship between Lr68 and the race-specific seedling resistance gene Lr14b, located in the same region and present in Parula, Arula1 and Arula2, was investigated by evaluating the RILs with Lr14b-avirulent P. triticina race TCT/QB in the greenhouse. Although Lr14b and Lr68 homozygous recombinants in repulsion were not identified in RILs, γ-irradiation-induced deletion stocks that lacked Lr68 but possessed Lr14b showed that Lr68 and Lr14b are different loci. Flanking DNA markers that are tightly linked to Lr68 in a wide array of genotypes can be utilized for selection of APR to leaf rust.  相似文献   

8.
Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.  相似文献   

9.
A model of winter wheat foliar disease is described, parameterised and tested for Septoria tritici (leaf blotch), Puccinia striiformis (yellow rust), Erysiphe graminis (powdery mildew) and Puccinia triticina (brown rust). The model estimates disease‐induced green area loss, and can be coupled with a wheat canopy model, in order to estimate remaining light‐intercepting green tissue and hence the capacity for resource capture. The model differs from those reported by other workers in three respects. First, variables (such as weather, host resistance and inoculum pressure) that affect disease risk are integrated in their effect on disease progress. The agronomic and meteorological data called for are restricted to those commonly available to growers by their own observations and from meteorological service networks. Second, field observations during the growing season can be used both to correct current estimates of disease severity and to modify parameters that determine predicted severity. Third, pathogen growth and symptom expression are modelled to allow the effects of fungicides to be accounted for as protectant activity (reducing infections that occur postapplication) and eradicant activity (reducing growth of presymptomatic infections). The model was tested against data from a wide range of sites and varieties and was shown to predict the expected level of disease sufficiently accurately to support fungicide treatment decisions.  相似文献   

10.
Fungal diseases are among the most devastating biotic stresses and often cause significant losses in wheat production worldwide. A set of 173 synthetic hexaploid wheat (SHW) characterized for resistance against fungal pathogens that cause leaf, stem and yellow rusts, yellow leaf spot, Septoria nodorum and crown rot were used in genome-wide association study (GWAS). Diversity Arrays Technology (DArT) and DArTSeq markers were employed for marker–trait association in which 74 markers associated with 35 quantitative trait loci (QTL) were found to be significantly linked with disease resistances using a unified mixed model (P = 10?3 to 10?5); Of these 15 QTL originated from D genome. Six markers on 1BL, 3BS, 4BL, 6B, and 6D conferred resistance to two diseases representing 10 of the 35 QTL. A further set of 147 SHW genotyped with DArT only markers validated 11 QTL detected in the previous 173 SHW. We also confirmed the presence of the gene Lr46/Yr29/Sr58/Pm39/Ltn2 on 1BL in the SHW germplasm. In addition, gene–gene interactions between significantly associated loci and all loci across the genome revealed five significant interactions at FDR <0.05. Two significant leaf rust and one stem rust interactions were thought to be synergistic, while another two QTL for yellow leaf spot involved antagonistic relations. To the best of our knowledge, this is the first GWAS for six fungal diseases using SHW. Identification of markers associated with disease resistance to one or more diseases represents an important resource for pyramiding favorable alleles and introducing multiple disease resistance from SHW accessions into current elite wheat cultivars.  相似文献   

11.
An association genetics analysis was conducted to investigate the genetics of resistance to Septoria tritici blotch, caused by the fungus Zymoseptoria tritici (alternatively Mycosphaerella graminicola), in cultivars and breeding lines of wheat (Triticum aestivum) used in the UK between 1860 and 2000. The population was tested with Diversity Array Technology (DArT) and simple‐sequence repeat (SSR or microsatellite) markers. The lines formed a single population with no evidence for subdivision, because there were several common ancestors of large parts of the pedigree. Quantitative trait loci (QTLs) controlling Septoria resistance were postulated on 11 chromosomes, but 38% of variation was not explained by the identified QTLs. Calculation of best linear unbiased predictions (BLUPs) identified lineages of spring and winter wheat carrying different alleles for resistance and susceptibility. Abundant variation in Septoria resistance may be exploited by crossing well‐adapted cultivars in different lineages to achieve transgressive segregation and thus breed for potentially durable quantitative resistance, whereas phenotypic selection for polygenic quantitative resistance should be effective in breeding cultivars with increased resistance. The most potent allele reducing susceptibility to Septoria, on chromosome arm 6AL, was associated with reduced leaf size. Genes which increase susceptibility to Septoria may have been introduced inadvertently into UK wheat breeding programmes from cultivars used to increase yield, rust resistance and eyespot resistance between the 1950s and 1980s. This indicates the need to consider trade‐offs in plant breeding when numerous traits are important and to be cautious about the use of non‐adapted germplasm.  相似文献   

12.
Over 100 genes of resistance to rust fungi: Puccinia recondita f. sp. tritici, (47 Lr - leaf rust genes), P. striiformis (18 Yr - yellow rust genes) and P. graminis f. sp. tritici (41 Sr - stripe rust genes) have been identified in wheat (Triticum aestivum L.) and its wild relatives according to recent papers. Sixteen Lr resistance genes have been mapped using restriction fragments length polymorphism (RFLP) markers on wheat chromosomes. More than ten Lr genes can be identified in breeding materials by sequence tagged site (STS) specific markers. Gene Lrk 10, closely linked to gene Lr 10, has been cloned and its function recognized. Available markers are presented in this review. The STS, cleaved amplified polymorphic sequence (CAPS) and sequence characterized amplified regions (SCAR) markers found in the literature should be verified using Triticum spp. with different genetic background. Simple sequence repeats (SSR) markers for Lr resistance genes are now also available.  相似文献   

13.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

14.
Hordeum chilense is a South American wild barley with high potential for cereal breeding given its high crossability with other members of the Triticeae. In the present paper we consider the resistance of H. chilense to several fungal diseases and the prospects for its transference to cultivated cereals. All H. chilense accessions studied are resistant to the barley, wheat and rye brown rusts, the powdery mildews of wheat, barley, rye and oat, to Septoria leaf blotch, common bunt and to loose smuts, which suggests that H. chilense is a non-host of these diseases. There are also lines resistant to wheat and barley yellow rust, stem rust and to Agropyron leaf rust, as well as lines giving moderate levels of resistance to Septoria glume blotch, tan spot and Fusarium head blight. Some H. chilense lines display pre-appressorial avoidance to brown rust. Lines differ in the degree of haustorium formation by rust and mildew fungi they permit, and in the degree to which a hypersensitive response occurs after haustoria are formed. Unfortunately, resistance of H. chilense to rust fungi is not expressed in tritordeum hybrids, nor in chromosome addition lines in wheat. In tritordeum, H. chilense contributes quantitative resistance to wheat powdery mildew, tan spot and loose smut. The resistance to mildew, expressed as a reduced disease severity, is not associated with macroscopically visible necrosis. Hexaploid tritordeums are immune to Septoria leaf blotch and to common bunt although resistance to both is slightly diluted in octoploid tritordeums. Studies with addition lines in wheat indicate that the resistance of H. chilense to powdery mildew, Septoria leaf blotch and common bunt is of broad genetic basis, conferred by genes present on various chromosomes.  相似文献   

15.
The Swiss winter bread wheat cv. Forno has a highly effective, durable and quantitative leaf rust (Puccinia triticina Eriks.) resistance which is associated with leaf tip necrosis (LTN). We studied 240 single seed descent lines of an Arina×Forno F5:7 population to identify and map quantitative trait loci (QTLs) for leaf rust resistance and LTN. Percentage of infected leaf area (%) and the response to infection (RI) were evaluated in seven field trials and were transformed to the area under the disease progress curves (AUDPC). Using composite interval mapping and LOD >4.4, we identified eight chromosomal regions specifically associated with resistance. The largest and most consistent leaf rust resistance locus was identified on the short arm of chromosome 7D (32.6% of variance explained for AUDPC_% and 42.6% for AUDPC_RI) together with the major QTL for LTN (R 2=55.6%) in the same chromosomal region as Lr34 (Xgwm295). A second major leaf rust resistance QTL (R 2=28% and 31.5%, respectively) was located on chromosome arm 1BS close to Xgwm604 and was not associated with LTN. Additional minor QTLs for LTN (2DL, 3DL, 4BS and 5AL) and leaf rust resistance were identified. These latter QTLs might correspond to the leaf rust resistance genes Lr2 or Lr22 (2DS) and Lr14a (7BL).Electronic Supplementary Material Supplementary material ist available in the online version ot this article at Communicated by H.C. Becker  相似文献   

16.
Inheritance of leaf rust and stem rust resistance in 'Roblin' wheat.   总被引:2,自引:0,他引:2  
P L Dyck 《Génome》1993,36(2):289-293
The Canadian common wheat (Triticum aestivum L.) cultivar 'Roblin' is resistant to both leaf rust (Puccinia recondita Rob. ex. Desm.) and stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn.). To study the genetics of this resistance, 'Roblin' was crossed with 'Thatcher', a leaf rust susceptible cultivar, and RL6071, a stem rust susceptible line. A set of F6 random lines was developed from each cross. The random lines and the parents were grown in a field rust nursery artificially inoculated with a mixture of P. recondita and P. graminis isolates and scored for rust reaction. The same material was tested with specific races of leaf rust and stem rust. These data indicated that 'Roblin' has Lr1, Lr10, Lr13, and Lr34 for resistance to P. recondita and Sr5, Sr9b, Sr11, and possibly Sr7a and Sr12 for resistance to P. graminis. In a 'Thatcher' background, the presence of Lr34 contributes to improve stem rust resistance, which appears also to occur in 'Roblin'.  相似文献   

17.
The Lr34/Yr18 locus has contributed to durable, non-race specific resistance against leaf rust (Puccinia triticina) and stripe rust (P. striiformis f. sp. tritici) in wheat (Triticum aestivum). Lr34/Yr18 also cosegregates with resistance to powdery mildew (Pm38) and a leaf tip necrosis phenotype (Ltn1). Using a high resolution mapping family from a cross between near-isogenic lines in the “Thatcher” background we demonstrated that Lr34/Yr18 also cosegregated with stem rust resistance in the field. Lr34/Yr18 probably interacts with unlinked genes to provide enhanced stem rust resistance in “Thatcher”. In view of the relatively low levels of DNA polymorphism reported in the Lr34/Yr18 region, gamma irradiation of the single chromosome substitution line, Lalbahadur(Parula7D) that carries Lr34/Yr18 was used to generate several mutant lines. Characterisation of the mutants revealed a range of highly informative genotypes, which included variable size deletions and an overlapping set of interstitial deletions. The mutants enabled a large number of wheat EST derived markers to be mapped and define a relatively small physical region on chromosome 7DS that carried Lr34/Yr18. Fine scale genetic mapping confirmed the physical mapping and identified a genetic interval of less than 0.5 cM, which contained Lr34/Yr18. Both rice and Brachypodium genome sequences provided useful information for fine mapping of ESTs in wheat. Gene order was more conserved between wheat and Brachypodium than with rice but these smaller grass genomes did not reveal sequence information that could be used to identify a candidate gene for rust resistance in wheat. We predict that Lr34/Yr18 is located within a large insertion in wheat not found at syntenic positions in Brachypodium and rice. W. Spielmeyer and R. P. Singh contributed equally to the study through the “Thatcher” and “Lalbahadur” genetic stocks, respectively.  相似文献   

18.
A detailed RFLP map was constructed of the distal end of the short arm of chromosome 1D of Aegilops tauschii and wheat. At least two unrelated resistance-gene analogs (RGAs) mapped close to known leaf rust resistance genes (Lr21 and Lr40) located distal to seed storage protein genes on chromosome 1DS. One of the two RGA clones, which was previously shown to be part of a candidate gene for stripe rust resistance (Yr10) located within the homoeologous region on 1BS, identified at least three gene family members on chromosome 1DS of Ae. tauschii. One of the gene members co-segregated with the leaf rust resistance genes, Lr21 and Lr40, in Ae. tauschii and wheat segregating families. Hence, a RGA clone derived from a candidate gene for stripe rust resistance located on chromosome 1BS detected candidate genes for leaf rust resistance located in the corresponding region on 1DS of wheat. Received: 10 January 2000 / Accepted: 25 March 2000  相似文献   

19.
The wheat crop remains vulnerable to all three rust diseases (leaf rust, stem rust and yellow rust) caused by Puccinia spp. according to the prevalence of the pathogen in different wheat-growing areas worldwide. Stripe rust or yellow rust caused by Puccinia striiformis f. sp. tritici is the most significant rust pathogen which prefers cool, moist areas and highlands. The pathogen is recognised as responsible for huge production losses in wheat. Genetic variation in pathogen makes its control difficult. Therefore, resistance against all the races of the pathogen known as durable or race-non-specific resistance is preferred. The present study was carried out to identify durable resistance against stripe rust in selected wheat cultivars from Pakistan through seedling testing, field evaluation at adult stage, morphological marker studies and marker-assisted selection. Results revealed that 4% of the cultivars were resistant at the seedling stage while the rest were susceptible or intermediate. To confirm their field resistance, the same cultivars were evaluated under field conditions at Cereal Crops Research Institute Pirsabak (located in Khyber Pakhtunkhwa, KP) a hot spot of stripe rust in Pakistan. Observations exhibited that at the adult stage 4% of the cultivars were resistant, 70% intermediate or moderately resistant while the others were highly susceptible. Leaf tip necrosis was observed in 30% of the cultivars. Wheat cultivars showing susceptibility at the seedling stage were highly to moderately resistant at adult stage showing durable resistance. For further validation, morphological markers were also observed in cultivars indicating the presence of Yr18/Lr34 gene. Eleven cultivars (C-518, Mexipak, Kohinoor-83, Faisalabad-83, Zardana-93, Shahkar-95, Moomal-2002, Wattan-94, Pasban-90, Kiran-95, and Haider-2000) were identified, having durable or race non-specific resistance against stripe rust. These cultivars can further be utilised in wheat breeding programmes for deploying durable resistance to attain long lasting control against stripe rust.  相似文献   

20.
Molecular mapping of stem and leaf rust resistance in wheat   总被引:7,自引:0,他引:7  
Stem rust caused by Puccinia graminis f. sp. tritici Eriks and Henn and leaf rust caused by Puccinia triticina Rob. ex Desm. are major constraints to wheat production worldwide. In the present study, F4-derived SSD population, developed from a cross between Australian cultivars ‘Schomburgk’ and ‘Yarralinka’, was used to identify molecular markers linked to rust resistance genes Lr3a and Sr22. A total of 1,330 RAPD and 100 ISSR primers and 33 SSR primer pairs selected ob the basis of chromosomal locations of these genes were used. The ISSR marker UBC 840540 was found to be linked with Lr3a in repulsion at a distance of 6.0 cM. Markers cfa2019 and cfa2123 flanked Sr22 at a distance of 5.9 cM (distal) and 6.0 cM (proximal), respectively. The use of these markers in combination would predict the presence or absence of Sr22 in breeding populations. A previously identified PCR-based diagnostic marker STS638 linked to Lr20 was validated in this population. This marker showed a recombination value of 7.1 cM with Lr20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号