首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-catalyzed oxidation (MCO) of proteins leads to the conversion of some amino acid residues to carbonyl derivatives, and may result in loss of protein function. It is well documented that reactions with oxidation products of sugars, lipids, and amino acids can lead to the conversion of some lysine residues of proteins to N(epsilon)-(carboxymethyl)lysine (CML) derivatives, and that this increases their metal binding capacity. Because post-translational modifications that enhance their metal binding capacity should also increase their susceptibility to MCO, we have investigated the effect of lysine carboxymethylation on the oxidation of bovine serum albumin (BSA) by the Fe(3+)/ascorbate system. Introduction of approximately 10 or more mol CML/mol BSA led to increased formation of carbonyls and of the specific oxidation products glutamic and adipic semialdehydes. These results support the view that the generation of CML derivatives on proteins may contribute to the oxidative damage that is associated with aging and a number of age-related diseases.  相似文献   

2.
N -(carboxymethyl)lysine, an advanced glycation end product, is present in the human lens. The effects of CML formation on protein conformation and stability were studied using the recombinant C-crystallin as a model. Conformational change was studied by spectroscopic measurements such as fluorescence and circular dichroism. Conformational stability was determined by unfolding with heat. The results indicated that no conformational change was observed due to CML formation, but conformational stability decreased. These observations can be explained in terms of the relatively stable structure of -crystallin, especially when compared with other crystallins. The lens nucleus is rich in -crystallin and its stable conformation can assist -crystallin sustained insults and remain soluble.  相似文献   

3.
The present investigation studies the effect of aging, short-term and long-term caloric restriction on four different markers of oxidative, glycoxidative or lipoxidative damage to heart mitochondrial proteins: protein carbonyls (measured by ELISA); N epsilon -(carboxyethyl)lysine (CEL), N epsilon -(carboxymethyl)lysine (CML), and N epsilon -(malondialdehyde)lysine (MDA-lys) measured by gas chromatography/mass spectrometry. Aging increased the steady state level of CML in rat heart mitochondria without changing the levels of the other three markers of protein damage. Short-term caloric restriction (six weeks) did not change any of the parameters measured. However, long-term (one year) caloric restriction decreased CEL and MDA-lys in heart mitochondria and did not change protein carbonyls and CML levels. The decrease in MDA-lys was not due to changes in the sensitivity of mitochondrial lipids to peroxidation since the measurements of the fatty acid composition showed that the total number of fatty acid double bonds was not changed by caloric restriction. The decrease in CEL and MDA-lys in caloric restriction agrees with the previously and consistently described finding that caloric restriction agrees with the previously and consistently described finding that caloric restriction lowers the rate of generation of reactive oxygen species (ROS) in rodent heart mitochondria, although in the case of CEL a caloric restriction-induced lowering of glycaemia can also be involved. The CEL and MDA-lys results support the notion that caloric restriction decreases oxidative stress-derived damage to heart mitochondrial proteins.  相似文献   

4.
Recent studies suggested that interruption of the interaction of advanced glycation end products (AGEs), with the signal-transducing receptor receptor for AGE (RAGE), by administration of the soluble, extracellular ligand-binding domain of RAGE, reversed vascular hyperpermeability and suppressed accelerated atherosclerosis in diabetic rodents. Since the precise molecular target of soluble RAGE in those settings was not elucidated, we tested the hypothesis that predominant specific AGEs within the tissues in disorders such as diabetes and renal failure, N(epsilon)-(carboxymethyl)lysine (CML) adducts, are ligands of RAGE. We demonstrate here that physiologically relevant CML modifications of proteins engage cellular RAGE, thereby activating key cell signaling pathways such as NF-kappaB and modulating gene expression. Thus, CML-RAGE interaction triggers processes intimately linked to accelerated vascular and inflammatory complications that typify disorders in which inflammation is an established component.  相似文献   

5.
We propose a specific, reproducible and sensitive HPLC method for the determination of N(epsilon)-(carboxymethyl)lysine (CML) excreted in urine. Total CML was measured in acid hydrolysates of urine samples, while free CML was measured in acetonitrile-deproteinised urine samples using a RP-HPLC method with ortho-phtaldialdehyde (OPA)-derivatisation and fluorescence detection suited for automation. We compared the CML excretion of 51 non-proteinuric patients with diabetes mellitus (DM) (age 57+/-14 years, HbA1c 8.0+/-1.8%) to 42 non-diabetic controls (C) (age 45+/-17 years). The urinary excretion of total CML in diabetic patients was increased by approximately 30% (DM: 0.58+/-0.21; C: 0.45+/-0.14 microM/mmol creatinine; P<0.001). While urinary excretion of free CML was not significantly different, excretion of bound CML was increased (DM: 0.36+/-0.17; C: 0.27+/-0.14; P<0.05) in diabetic patients. CML excretion was correlated with protein and albumin excretion, but did not correlate with HbA1c, duration of DM or diabetic complications such as neuropathy or retinopathy. Furthermore, no age-dependent change of total CML excretion was found, while free CML excretion was lower in younger subjects. The specific and sensitive determination of CML by RP-HPLC of its OPA-derivative is well suited for automation and better than that of less defined glycoxidation products (AGEs).  相似文献   

6.
Conventional peritoneal dialysis fluids (PDFs) lead to formation of advanced glycation end-products (AGE) in the peritoneal membrane. In this study, we investigated in vitro the dependence of AGE formation on regular changes of PDFs, as performed during continuous ambulatory peritoneal dialysis (CAPD), and on the contribution of high glucose concentration versus glucose degradation products (GDPs). Under conditions similar to CAPD, protein glycating activity of a conventional single chamber bag PDF (CAPD 4.25%), two double chamber bag PDFs (CAPD Balance 4.25% and CAPD Bicarbonate 4.25%) and a sterile filtered control was measured in vitro by N(epsilon)-(carboxymethyl)lysine (CML) and imidazolones, two well characterized, physiologically relevant AGE structures. Regular changes of PDFs increased AGE formation (CML 3.3-fold and imidazolone 2.6-fold) compared to incubation without changes. AGE formation by CAPD 4.25% was increased compared to control (imidazolones 7.9-fold and CML 3.3-fold) and the use of double chamber bag PDFs led to a decrease of imidazolones by 79% (CAPD Bicarbonate 4.25%) and by 66% (CAPD Balance 4.25%) and to CML contents similar to the control. These results indicate that a major part of AGEs were formed by GDPs in PDFs, whereas only a minor part was due to high glucose concentration. The use of double chamber bag fluids can reduce AGE formation considerably.  相似文献   

7.
N epsilon-(Carboxymethyl)lysine (CML) is formed on oxidative cleavage of carbohydrate adducts to lysine residues in glycated proteins in vitro [Ahmed et al. (1988) J. Biol. Chem. 263, 8816-8821; Dunn et al. (1990) Biochemistry 29, 10964-10970]. We have shown that, in human lens proteins in vivo, the concentration of fructose-lysine (FL), the Amadori adduct of glucose to lysine, is constant with age, while the concentration of the oxidation product, CML, increases significantly with age [Dunn et al. (1989) Biochemistry 28, 9464-9468]. In this work we extend our studies to the analysis of human skin collagen. The extent of glycation of insoluble skin collagen was greater than that of lens proteins (4-6 mmol of FL/mol of lysine in collagen versus 1-2 mmol of FL/mol of lysine in lens proteins), consistent with the lower concentration of glucose in lens, compared to plasma. In contrast to lens, there was a slight but significant age-dependent increase in glycation of skin collagen, 33% between ages 20 and 80. As in lens protein, CML, present at only trace levels in neonatal collagen, increased significantly with age, although the amount of CML in collagen at 80 years of age, approximately 1.5 mmol of CML/mol of lysine, was less than that found in lens protein, approximately 7 mmol of CML/mol of lysine. The concentration of N epsilon-(carboxymethyl)hydroxylysine (CMhL), the product of oxidation of glycated hydroxylysine, also increased with age in collagen, in parallel with the increase in CML, from trace levels at infancy to approximately 5 mmol of CMhL/mol of hydroxylysine at age 80.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Since the accumulation of Nε-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.  相似文献   

9.
Accumulation of carboxymethylated proteins (CML-proteins) is taken as a biomarker of glycoxidative stress which is thought to contribute to the age-related impairment in tissue and cell function. To investigate the occurrence and extent of glycoxidative damage with aging in rat kidney, serum and urine, we have prepared a polyclonal antibody against CML-modified bovine serum albumin. We subsequently used it for immunolocalization and in enzyme-linked immunosorbent assays to evaluate CML-protein content. In the serum, CML-protein level was 1.43+/-0.14 pmol CML/micrograms protein at 3 months and significantly increased by 50% from 10 to 27 months (1.50+/-0.14 pmol CML/micrograms protein vs 2.27+/-0.26 pmol CML/micrograms protein), albumin and transferrin being the main modified proteins. In the urine, CML-protein level was 2.50+/-0.14 pmol CML/micrograms protein at 3 months and markedly increased from 10 months (2.99+/-0.24 pmol CML/micrograms protein) to 27 months (3.76+/-0.25 pmol CML/micrograms protein), with albumin as the main excreted modified protein. Immunolocalization of CML-proteins in kidney provided evidence for an age-dependent increased accumulation in extracellular matrices. Intense staining of the glomerular basement membrane (GBM), Bowman's capsule, and the tubular basement membrane was found. Additionally, the CML content for collagen from GBM was 195.85+/-28.95 pmol CML/microgrms OHPro at 3 months and significantly increased from 10 months (187.61+/-21.99 pmol CML/micrograms OHPro) to 27 months (334.55+/-62.21 pmol CML/micrograms OHPro). These data show that circulating CML-protein level in serum and urine and CML accumulation in nephron extracellular matrices with aging are increasing in parallel. The CML-protein measurement in serum and urine may thus be used as an index for the assessment of age-associated glycoxidative kidney damage.  相似文献   

10.
Summary This report describes the enzyme-catalyzed synthesis, characterization, and chromatographic separation of N6-(carboxymethyl)-L-lysine and N5-(carboxymethyl)-L-ornithine. The two N -(carboxyalkyl)amino acids are formed via a reductive condensation between glyoxylate and the- or-amino groups of lysine and ornithine, respectively. Both reactions are catalyzed by the NADPH-dependent enzyme, N5-(carboxyethyl)ornithine synthase [EC 1.5.1.24], found in some strains of the lactic acid bacteriumLactococcus lactis subsp.lactis.  相似文献   

11.
Acrolein, a representative carcinogenic aldehyde, that could be ubiquitously generated in biological systems under oxidative stress shows facile reactivity with a nucleophile such as a protein. In this study, to gain a better understanding of the molecular basis of acrolein modification of protein, we characterized the acrolein modification of a model peptide (the oxidized B chain of insulin) by electrospray ionization-liquid chromatography/mass spectrometry method and established a novel acrolein-lysine condensation reaction. In addition, we found that this condensation adduct represented the major antigenic adduct generated in acrolein-modified protein. To identify the modification site and structures of adducts generated in the acrolein-modified insulin B chain, both the acrolein-pretreated and untreated peptides were digested with V8 protease and the resulting peptides were subjected to electrospray ionization-liquid chromatography/mass spectrometry. This technique identified nine peptides, which contained the acrolein adducts at Lys-29 and the N terminus, and revealed that the reaction of the insulin B chain with acrolein gave multiple adducts, including an unknown adduct containing two molecules of acrolein per lysine. To identify this adduct, we incubated N(alpha)-acetyllysine with acrolein and isolated a product having the same molecular mass as the unknown acrolein-lysine adduct. On the basis of the chemical and spectroscopic evidence, the adduct was determined to be a novel pyridinium-type lysine adduct, N(epsilon)-(3-methylpyridinium)lysine (MP-lysine). The formation of MP-lysine was confirmed by amino acid analysis of proteins treated with acrolein. More notably, this condensation adduct appeared to be an intrinsic epitope of a monoclonal antibody 5F6 that had been raised against acrolein-modified protein.  相似文献   

12.
Since the accumulation of Nε-(carboxymethyl)lysine (CML), a major antigenic advanced glycation end product, is implicated in tissue disorders in hyperglycemia and inflammation, the identification of the pathway of CML formation will provide important information regarding the development of potential therapeutic strategies for these complications. The present study was designed to measure the effect of hypochlorous acid (HOCl) on CML formation from Amadori products. The incubation of glycated human serum albumin (glycated-HSA), a model of Amadori products, with HOCl led to CML formation, and an increasing HOCl concentration and decreasing pH, which mimics the formation of these products in inflammatory lesions. CML formation was also observed when glycated-HSA was incubated with activated neutrophils, and was completely inhibited in the presence of an HOCl scavenger. These data demonstrated that HOCl-mediated CML formation from Amadori products plays a role in CML formation and tissue damage at sites of inflammation.  相似文献   

13.
Down-regulation of protein phosphatase 2A (PP2A) is thought to play a critical role in tau hyperphosphorylation in Alzheimer's disease (AD). In vitro phosphorylation of PP2A catalytic subunit at Y307 efficiently inactivates PP2A. A specific antibody against phosphorylated (p) PP2A (Y307) (PP2Ac-Yp307) was used to investigate possible PP2A down-regulation by known pathophysiological changes associated with AD, such as Abeta accumulation and oestrogen deficiency. Immunohistochemistry and immunofluorescence confocal microscopy showed an aberrant accumulation of PP2Ac-Yp307 in neurons that bear pretangles or tangles in the susceptible brain regions, such as the entorhinal cortical cortex and the hippocampus. Experimentally, increased PP2Ac-Yp307 was observed in mouse N2a neuroblastoma cells that stably express the human amyloid precursor protein with Swedish mutation (APPswe) compared with wild-type, and in the brains of transgenic APPswe/ presenilin (PS1, A246E) mice, which corresponded to the increased tau phosphorylation. Treating N2a cells with Abeta25-35 mimicked the changes of PP2Ac-Yp307 and tau phosphorylation in N2a APPswe cells. Knockout of oestrogen receptor (ER) alpha or ERbeta gave similar changes of PP2Ac-Yp307 level and tau phosphorylation in the mouse brain. Taken together, these findings suggest that increased PP2A phosphorylation (Y307) can be mediated by Abeta deposition or oestrogen deficiency in the AD brain, and consequently compromise dephosphorylation of abnormally hyperphosphorylated tau, and lead to neurofibrillary tangle formation.  相似文献   

14.
The identification and quantification of N(epsilon)-(hexanoyl)lysine (N(epsilon)-HEL), which was found from the reactions between lipid hydroperoxide and lysine, from human urine was examined using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The N(epsilon)-HEL in the partially purified urine fraction was identified using LC/MS/MS by several approaches including precursor/product ion scans. The peak found by the multiple-reaction monitoring (MRM) of the collision-induced fragmentation of N(epsilon)-HEL was clearly observed in urine, and the elution position coincided with the synthetic standard N(epsilon)-HEL. The product, estimated N(epsilon)-HEL, was absorbed by a specific antibody to N(epsilon)-HEL. Moreover, N(alpha)-HEL, one of the plausible hexanoyl adducts from the reaction between the N(alpha) moiety of L-lysine and the peroxidized lipid, was hardly detected in urine samples, suggesting that the origin of the N(epsilon)-HEL is the peroxidized lipid-modified proteins but not artificial hexanoylated L-lysine. Using the MRM technique, the amount of urinary N(epsilon)-HEL from the control subjects (observed healthy) was estimated to be 1.58 +/- 0.23 mumol/mol of creatinine. A comparative study of the urinary N(epsilon)-HEL with an oxidative stress marker, 8-oxo-7,8-dihydro-2'-deoxyguanosine, showed a high correlation (r = 0.844) between the two biomarkers. Furthermore, the quantification of N(epsilon)-HEL in the control and diabetic urines revealed that the urinary N(epsilon)-HEL from diabetic subjects (3.21 +/- 0.65 mumol/mol of creatinine) was significantly higher than that from the control subjects.  相似文献   

15.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of fructoselysine (FL) in glycated (nonenzymatically glycosylated) proteins in vitro and has also been detected in human tissues and urine [Ahmed et al. (1986) J. Biol. Chem. 261, 4889-4894]. In this study, we compare the amounts of CML and FL in normal human lens proteins, aged 0-79 years, using specific and sensitive assays based on selected ion monitoring gas chromatography-mass spectrometry. Our results indicate that the lens content of FL increases significantly between infancy and about age 5 but that there is only a slight, statistically insignificant increase in FL between age 5 and 80 (mean +/- SD = 1.4 +/- 0.4 mmol of FL/mol of Lys). In contrast, the lens content of the oxidation product, CML, increased linearly with age, ranging from trace levels at infancy up to 8 mmol of CML/mol of lysine at age 79. The ratio of CML to FL also increased linearly from 0.5 to 5 mol of CML/mol of FL between age 1 and 79, respectively. These results indicate that CML, rather than FL, is the major product of glycation detectable in adult human lens protein. The age-dependent accumulation of CML in lens protein indicates that products of both glycation and oxidation accumulate in the lens with age, while the constant rate of accumulation of CML in lens with age argues against an age-dependent decline in free radical defense mechanisms in this tissue.  相似文献   

16.
N(epsilon)-(carboxymethyl)lysine (CML) is an advanced glycation end product formed by non-enzymatic glycation and oxidation of proteins. The distribution pattern of CML-modified proteins in normal and osteoarthritic (OA) cartilage was investigated using specific antibodies. In healthy articular cartilage, immunoreactivity for CML was preferably found in the extracellular matrix (ECM) of the superficial layer. In OA samples, CML immunoreactivity was not restricted to the ECM of the superficial layer. Interestingly, OA chondrocytes showed a remarkable cytoplasmic immunoreactivity for CML. With the help of a western blot analysis CML-modified proteins between 68 and 39 kDa could be demonstrated in OA cartilage samples. These results suggest that the accumulation of CML adducts contributes to the matrix damage in osteoarthritis. Therefore, the inhibition of CML accumulation may represent an effective therapeutic strategy to prevent severe OA cartilage injury.  相似文献   

17.
J Bello 《Biopolymers》1992,32(2):185-188
Helix formation in (Lys)n.HClO4 and poly(N epsilon,N epsilon,N epsilon-trimethyl-L-lysine).HClO4 +AD(LysMe3)n.HClO4+BD is dependent on peptide concentration and on molecular weight. For (LysMe3)n.HClO4 of degree of polymerization (DP) 2510 the midpoint of the coil-to-helix transition is 2 mM and for DP of 190 it is 5 mM. For (Lys)n.HClO4 the peptide concentration for half-helix is 30-60 times as high, and is only weakly dependent, if at all, on molecular weight. Helix formation is an intermolecular process. The use of methylated (Lys)n as the perchlorate permits study of the intermolecular coil-helix transition at low concentration, instead of the high concentration (ca. 1-2 M) required for (Lys)n.HBr. At constant peptide concentration helix content increases with added NaClO4. The higher the peptide concentration, the less NaClO4 is needed to induce helix.  相似文献   

18.
The ultrastructure of neurofibrillary tangles (NFT) was examined by electron microscopy. The fibrils of NFT seemed to consists of about eight protofilaments consisting of globular subunits; these protofilaments were helically wound in a longitudinal direction. The fibrils of NFT had hollow structures at their centers surrounded by the eight globular subunits. The subunits were tighty connected in the narrow parts of the fibril, but more loosely connected in the wider parts. From these findings, it seemed that the fibrils of NFT consist of a twisted tubule having periodical `constrictions and is made up of eight helically wound protofilaments, forming globular subunits.  相似文献   

19.
Clots were allowed to form in samples of whole blood taken from the American horseshoe crab, Limulus polyphemus, in the absence and presence of dansylcadaverine (16), and were analyzed for their contents of N epsilon(gamma-glutamyl)lysine and gamma-glutamyl-dansylcadaverine. Clots obtained without dansylcadaverine yielded significant amounts of N epsilon(gamma-glutamyl)lysine product. Clots formed in the presence of dansylcadaverine yielded only gamma-glutamyl-dansylcadaverine. Formation of these products reflects on the activity of transglutaminase released from the blood cells during coagulation.  相似文献   

20.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of glucose adducts to protein in vitro and has been detected in human tissue proteins and urine [Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894; Dunn, J. A., Patrick, J. S., Thorpe, S. R., & Baynes, J. W. (1989) Biochemistry 28, 9464-9468]. In the present study we show that CML is also formed in reactions between ascorbate and lysine residues in model compounds and protein in vitro. The formation of CML from ascorbate and lysine proceeds spontaneously at physiological pH and temperature under air. Kinetic studies indicate that oxidation of ascorbic acid to dehydroascorbate is required. Threose and N epsilon-threuloselysine, the Amadori adduct of threose to lysine, were identified in the ascorbate reaction mixtures, suggesting that CML was formed by oxidative cleavage of N epsilon-threuloselysine. Support for this mechanism was obtained by identifying CML as a product of reaction between threose and lysine and by analysis of the relative rates of formation of threuloselysine and CML in reactions of ascorbate or threose with lysine. The detection of CML as a product of reaction of ascorbate and threose with lysine suggests that other sugars, in addition to glucose, may be sources of CML in proteins in vivo. The proposed mechanism for formation of CML from ascorbate is an example of autoxidative glycosylation of protein and suggests that CML may also be an indicator of autoxidative glycosylation of proteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号