首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present a family with autosomal-dominant inheritance of renal insufficiency caused by renal hypoplasia in six individuals. In all affected individuals, signs of optic disk dysplasia were detected, but most patients were asymptomatic. A heterozygous missense mutation in the PAX2 gene causing a Gly75 to Ser substitution was present in all affected individuals. A second, unrelated patient presented with ocular complaints related to optic disk dysplasia, and had a history of vesico-ureteral reflux. A heterozygous hexanucleotide duplication in the PAX2 gene was detected leading to the duplication of GluThr at positions 74 and 75. The mutations in these two families are the first mutations in the PAX2 gene that do not lead to a truncated protein. Mechanistically, these mutations are expected to result in abnormal folding of the PAX2 protein. These observations further expand the spectrum of clinical features associated with PAX2 mutations, and suggest that a distinct genetic disorder can be identified in patients with renal dysplasia through a careful eye examination. As the ocular manifestations in this syndrome are variable anomalies of retinal and optic disk dysplasia, we prefer the term “papillo-renal syndrome”. Received: 29 January 1998 / Accepted: 25 March 1998  相似文献   

3.
4.
Microphthalmia/anophthalmia is a clinically heterogeneous disorder of eye formation, ranging from small size of a single eye to complete bilateral absence of ocular tissues. The genetic defect underlying isolated autosomal recessive microphthalmia/anophthalmia is yet unclear. We studied four families (two of Arab origin, one of Bedouin origin, and one of Persian-Jewish origin) with autosomal recessive microphthalmia/anophthalmia and no associated eye anomalies, and one Syrian–Jewish family with associated colobomas. Assuming a founder effect in each of the families, we performed homozygosity mapping using polymorphic markers adjacent to human homologues of genes known to be associated with eye absence in various species, namely EYA1, EYA2, EYA3, SIX4, SIX6, PAX6 and CHX10. No association was found with EYA1, EYA2, EYA3, SIX6 or PAX6. In two families, linkage analysis was consistent with possible association with SIX4, but no mutations were found in the coding region of the gene or its flanking intron sequences. In three of the five families, linkage analysis followed by sequencing demonstrated that affected individuals in each family were homozygous for a different CHX10 aberration: a mutation in the CVC domain and a deletion of the homeobox domain were found in two Arab families, and a mutation in the donor-acceptor site in the first intron in the Syrian-Jewish family. There was phenotypic variation between families having different mutations, but no significant phenotypic variation within each family. It has been previously shown that mutations in a particular nucleotide in CHX10 are associated with an autosomal recessive syndrome of microphthalmia/anophthalmia with iris colobomas and cataracts in two families. We now show that different mutations in other domains of the same gene underlie isolated microphthalmia/anophthalmia.  相似文献   

5.
The importance of heparan sulfate proteoglycans (HSPGs) in neurodevelopment is becoming increasingly clear. However, studies on HSPGs are hampered by pleiotropic effects when synthesis or modification of heparan sulfate itself is targeted, and by redundancy when the core proteins are altered. Gain-of-function experiments can sometimes circumvent these issues. Here we establish that transgenic mice overexpressing the HSPG agrin have severe ocular dysgenesis. The defects occur through a gain-of-function mechanism and penetrance is dependent on agrin dosage. The agrin-induced developmental defects are highly variable, and include anophthalmia, persistence of vitreous vessels, and fusion of anterior chamber structures. A frequently observed defect is an optic stalk coloboma leading to the misdifferentiation of the optic stalk as retina, which becomes continuous with the forebrain. The defects in optic-stalk differentiation correlate with reduced sonic hedgehog immunoreactivity and overexpansion of the PAX6 domain from the retina into the optic stalk. The ocular phenotypes associated with agrin overexpression are dependent on genetic background, occurring with high penetrance in inbred C57BL/6J mice. Distinct loci sensitizing C57BL/6J mice to agrin-induced dysgenesis were identified. These results indicate that agrin overexpression will provide a tool to explore the molecular interactions of the extracellular matrix and cell surface in eye development, and provide a means for identifying modifier loci that sensitize mice to developmental eye defects.  相似文献   

6.
Microphthalmia with limb anomalies (MLA) is a rare autosomal-recessive disorder, presenting with anophthalmia or microphthalmia and hand and/or foot malformation. We mapped the MLA locus to 14q24 and successfully identified three homozygous (one nonsense and two splice site) mutations in the SPARC (secreted protein acidic and rich in cysteine)-related modular calcium binding 1 (SMOC1) in three families. Smoc1 is expressed in the developing optic stalk, ventral optic cup, and limbs of mouse embryos. Smoc1 null mice recapitulated MLA phenotypes, including aplasia or hypoplasia of optic nerves, hypoplastic fibula and bowed tibia, and syndactyly in limbs. A thinned and irregular ganglion cell layer and atrophy of the anteroventral part of the retina were also observed. Soft tissue syndactyly, resulting from inhibited apoptosis, was related to disturbed expression of genes involved in BMP signaling in the interdigital mesenchyme. Our findings indicate that SMOC1/Smoc1 is essential for ocular and limb development in both humans and mice.  相似文献   

7.
8.
The xenobiotic metabolizing enzyme, mouse arylamine N-acetyltransferase type 2 (Nat2), is expressed during embryogenesis from the blastocyst stage and in the developing neural tube and eye. Mouse Nat2 is widely believed to have an endogenous role distinct from xenobiotic metabolism, and polymorphisms in the human ortholog have been implicated in susceptibility to spina bifida and orofacial clefting. The developmental role of Nat2 was investigated using transgenic Nat2 knockout/lacZ knockin (Nat2 tm1Esim) mice. The transgene was bred onto an A/J background and offspring were scored for developmental defects at weaning. After backcross generation eight, an ocular defect, ranging from cataract to microphthalmia and anophthalmia, was recorded among offspring of backcross and intercross pairs. Histologic analysis of cataract cases revealed a failure of the lens to separate from the cornea and plaques within the lens tissue. While Nat2 −/− mice have been described as overtly aphenotypic, the presence of a Nat2 null allele in one or both parents can result in ocular defects. These ocular phenotypes and their association with Nat2 genotype indicate that the Nat2 locus may be responsible for the previously described microphthalmic Cat4 phenotype and implicate the orthologous human NAT as a phenotypic modifier of microphthalmia and anophthalmia.  相似文献   

9.
The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. Birth Defects Research (Part C) 105:96–113, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
The dystrophic forms of epidermolysis bullosa (DEB) are characterized by fragility of the skin and mucous membranes. DEB can be inherited in either an autosomal dominant or autosomal recessive pattern, and the spectrum of clinical severity is highly variable. The unifying diagnostic hallmark of DEB is abnormalities in the anchoring fibrils, which consist of type VII collagen, and, recently, mutations in the corresponding gene, COL7A1, have been disclosed in a number of families. In this study, we report six families with glycine substitution mutations in the triple-helical region of type VII collagen. Among the six families, two demonstrated a mild phenotype, and the inheritance of the mutation was consistent with the dominantly inherited form of DEB. In the four other families, the mutation was silent in the heterozygous state but, when present in the homozygous state, or combined with a second mutation, resulted in a recessively inherited DEB phenotype. Type VII collagen is, therefore, unique among the collagen genes, in that different glycine substitutions can be either silent in heterozygous individuals or result in a dominantly inherited DEB. Inspection of the locations of the glycine substitutions along the COL7A1 polypeptide suggests that the consequences of these mutations, in terms of phenotype and pattern of inheritance, are position independent.  相似文献   

11.
12.
13.
14.
BACKGROUND: There is a paucity of information about risk factors for the human eye anomalies anophthalmia and microphthalmia. In this population-based case-control study we investigated whether periconceptional intakes of supplemental folic acid, dietary folate, vitamin A, and several other nutrients were associated with these eye defects. METHODS: This study included data on deliveries that had estimated due dates from 1997-2002 and were part of the National Birth Defects Prevention Study (the National Birth Defects Prevention Study is a population-based case-control study of a wide spectrum of birth defects, incorporating data from 10 birth defects surveillance systems in the United States [Arkansas, California, Georgia/Centers for Disease Control and Prevention, Iowa, Massachusetts, New Jersey, New York, North Carolina, Texas, and Utah]). Cases were those infants or fetuses born with either anophthalmia or microphthalmia. Liveborn infants without major malformations were eligible as controls. Maternal interviews were conducted, primarily by telephone, in English or Spanish. Participation in the interview was 71% among case mothers and 68% among control mothers. Interviews were completed with 89 case mothers and 4,143 control mothers. A shortened version of the food frequency questionnaire from the Nurse's Health Study was used to assess frequency of intake of 58 food items during the year before pregnancy. RESULTS: Our results did not indicate reduced risks for these eye malformations associated with maternal intake of vitamin supplements containing folic acid. The data did not show an association between malformation risk and higher or lower intakes of vitamin A. We also did not observe strong evidence that an abundance or a lack of dietary intake of any other nutrient was associated with increased risk of the studied eye malformations. CONCLUSIONS: Our observations contribute to a limited body of findings on these rare eye defects.  相似文献   

15.
16.
Otx1 and Otx2, two murine homologs of the Drosophila orthodenticle (otd) gene, show a limited amino acid sequence divergence. Their embryonic expression patterns overlap in spatial and temporal profiles with two major exceptions: until 8 days post coitum (d.p.c. ) only Otx2 is expressed in gastrulating embryos, and from 11 d.p.c. onwards only Otx1 is transcribed within the dorsal telencephalon. Otx1 null mice exhibit spontaneous epileptic seizures and multiple abnormalities affecting primarily the dorsal telencephalic cortex and components of the acoustic and visual sense organs. Otx2 null mice show heavy gastrulation abnormalities and lack the rostral neuroectoderm corresponding to the forebrain, midbrain and rostral hindbrain. In order to define whether these contrasting phenotypes reflect differences in expression pattern or coding sequence of Otx1 and Otx2 genes, we replaced Otx1 with a human Otx2 (hOtx2) full-coding cDNA. Interestingly, homozygous mutant mice (hOtx2(1)/hOtx2(1)) fully rescued epilepsy and corticogenesis abnormalities and showed a significant improvement of mesencephalon, cerebellum, eye and lachrymal gland defects. In contrast, the lateral semicircular canal of the inner ear was never recovered, strongly supporting an Otx1-specific requirement for the specification of this structure. These data indicate an extended functional homology between OTX1 and OTX2 proteins and provide evidence that, with the exception of the inner ear, in Otx1 and Otx2 null mice contrasting phenotypes stem from differences in expression patterns rather than in amino acid sequences.  相似文献   

17.
We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.  相似文献   

18.
The common forms of isolated congenital heart disease are usually not inherited in a Mendelian pattern, and most are considered multifactorial threshold traits. A large subset consisting of a group of malformations of the ventricular outflow region, termed "conotruncal defects" (CTDs), include subarterial ventricular septal defects, tetralogy of Fallot, and persistent truncus arteriosus. Similar aggregations of CTDs have been reported in human families and in the keeshond breed of dog. The results of our early breeding experiments utilizing noninbred keeshonds were not consistent with any hypothesis of a fully penetrant monogenic inheritance. Here we report a recent series of genetic and embryologic studies conducted after more than 10 generations of selective inbred matings between affected-CTD-line dogs. The results are now consistent with a defect at a single autosomal locus, the Mendelian pattern of transmission having been obscured prior to selective inbreeding by genetic background. On the basis of morphometric embryologic studies, the mutant CTD allele causes conotruncal malformations in homozygous animals by interfering with myocardial growth in the conotruncus during the critical window when the conotruncal cushions fuse to form the conotruncal septum.  相似文献   

19.
Ophthalmo-acromelic syndrome (OAS), also known as Waardenburg Anophthalmia syndrome, is defined by the combination of eye malformations, most commonly bilateral anophthalmia, with post-axial oligosyndactyly. Homozygosity mapping and subsequent targeted mutation analysis of a locus on 14q24.2 identified homozygous mutations in SMOC1 (SPARC-related modular calcium binding 1) in eight unrelated families. Four of these mutations are nonsense, two frame-shift, and two missense. The missense mutations are both in the second Thyroglobulin Type-1 (Tg1) domain of the protein. The orthologous gene in the mouse, Smoc1, shows site- and stage-specific expression during eye, limb, craniofacial, and somite development. We also report a targeted pre-conditional gene-trap mutation of Smoc1 (Smoc1(tm1a)) that reduces mRNA to ~10% of wild-type levels. This gene-trap results in highly penetrant hindlimb post-axial oligosyndactyly in homozygous mutant animals (Smoc1(tm1a/tm1a)). Eye malformations, most commonly coloboma, and cleft palate occur in a significant proportion of Smoc1(tm1a/tm1a) embryos and pups. Thus partial loss of Smoc-1 results in a convincing phenocopy of the human disease. SMOC-1 is one of the two mammalian paralogs of Drosophila Pentagone, an inhibitor of decapentaplegic. The orthologous gene in Xenopus laevis, Smoc-1, also functions as a Bone Morphogenic Protein (BMP) antagonist in early embryogenesis. Loss of BMP antagonism during mammalian development provides a plausible explanation for both the limb and eye phenotype in humans and mice.  相似文献   

20.
Dystroglycanopathies are characterized by a reduction in the glycosylation of alpha-dystroglycan (α-DG). A common cause for this subset of muscular dystrophies is mutations in the gene of fukutin-related protein (FKRP). FKRP mutations have been associated with a wide spectrum of clinical severity from severe Walker–Warburg syndrome and muscle–eye–brain disease with brain and eye defects to mild limb–girdle muscular dystrophy 2I with myopathy only. To examine the affects of FKRP mutations on the severity of the disease, we have generated homozygous and compound heterozygous mouse models with human mutations in the murine FKRP gene. P448Lneo+ and E310delneo+ mutations result in severe dystrophic and embryonic lethal phenotypes, respectively. P448Lneo+/E310delneo+ compound heterozygotes exhibit brain defects and severe muscular dystrophies with near absence of α-DG glycosylation. Removal of the Neor cassette from the P448Lneo+ homozygous mice eliminates overt brain and eye defects, and reduces severity of dystrophic phenotypes. Furthermore, introduction of the common L276I mutation to generate transgenic L276Ineo+ homozygous and L276Ineo+/P448Lneo+ and L276Ineo+/E310delneo+ compound heterozygotes results in mice displaying milder dystrophies with reduced α-DG glycosylation and no apparent brain defects. Limited sampling and variation in functionally glycosylated α-DG levels between and within muscles may explain the difficulties in correlating FKRP expression levels with phenotype in clinics. The nature of individual mutations, expression levels and status of muscle differentiation all contribute to the phenotypic manifestation. These mutant FKRP mice are useful models for the study of disease mechanism(s) and experimental therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号