首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
Avian myeloblastosis virus (AMV) DNA polymerase is inactivated by preincubation with pyridoxal 5'-phosphate. This inactivation is relatively specific since various pyridoxal-5'-P analogs cause no inactivation. This effect is reversible but can be made irreversible by reduction with sodium borohydride; the reduced pyridoxal-5'-P adduct exhibits a new absorbance maximum at 325 nm and a fluorescence emission at 392 nm when excited at 325 nm. The evidence presented suggests the formation of a Schiff base between pyridoxal-5'-P and a nucleophilic residue of AMV DNA polymerase. The presence of a deoxynucleoside 5'-triphosphate (dTTP) protected the enzyme from inactivation. Reduction of the pyridoxal-5'-P enzyme complex in the presence or absence of a deoxynucleoside 5'-triphosphate showed that the alpha subunit possesses five reactive amino groups, one of which is essential for catalytic activity; the beta subunit has three reactive amino groups which are not involved in the deoxynucleoside binding site.  相似文献   

3.
Pyridoxal 5'-phosphate and other aromatic aldehydes inactivate rhodanese. The inactivation reaches higher extents if the enzyme is in the sulfur-free form. The identification of the reactive residue as an amino group has been made by spectrophotometric determination of the 5'-phosphorylated pyridoxyl derivative of the enzyme. The inactivation increases with pyridoxal 5'-phosphate concentration and can be partially removed by adding thiosulfate or valine. Prolonged dialysis against phosphate buffer also leads to the enzyme reactivation. The absorption spectra of the pyridoxal phosphate - rhodanese complex show a peak at 410 nm related to the Schiff base and a shoulder in the 330 nm region which is probably due to the reaction between pyridoxal 5'-phosphate and both the amino and thiol groups of the enzyme that appear reasonably close to each other. The relationship betweenloss of activity and pyridoxal 5'-phosphate binding to the enzyme shows that complete inactivation is achieved when four lysyl residues are linked to pyridoxal 5'-phosphate.  相似文献   

4.
Effects of pyridoxal 5'-phosphate on the activity of crude and purified acetylcholinesterase from cerebral hemispheres of adult rat brain were examined. Acetylcholinesterase was completely inactivated by incubation with 0.5 mM pyridoxal 5'-phosphate. The enzyme activity remained unaltered in the presence of analogs of pyridoxal 5'-phosphate, pyridoxal, pyridoxamine and pyridoxamine 5'-phosphate. The inhibition of acetylcholinesterase activity by pyridoxal 5'-phosphate appeared to be of a noncompetitive nature, as determined by Lineweaver-Burk analysis. The inhibitory effect of pyridoxal 5'-phosphate on acetylcholinesterase appeared to be a general one, as the activity of the enzyme from the brains of immature chick and egg-laying hen, and from different tissues of the adult male rats, exhibited a similar pattern in the presence of the inhibitor. The inhibitory effects of pyridoxal 5'-phosphate could be reversed upon exhaustive dialysis of the pyridoxal 5'-phosphate-treated acetylcholinesterase preparations. We propose that the effects of pyridoxal 5'-phosphate are due to its interaction with acetylcholinesterase, and that it can be employed as a useful tool for studying biochemical aspects of this important brain enzyme.  相似文献   

5.
6.
7.
Escherichia coli pyridoxine (pyridoxamine) 5'-phosphate oxidase (PNPOx) catalyzes the oxidation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate to pyridoxal 5'-phosphate (PLP) using flavin mononucleotide (FMN) as the immediate electron acceptor and oxygen as the ultimate electron acceptor. This reaction serves as the terminal step in the de novo biosynthesis of PLP in E. coli. Removal of FMN from the holoenzyme results in a catalytically inactive apoenzyme. PLP molecules bind tightly to both apo- and holoPNPOx with a stoichiometry of one PLP per monomer. The unique spectral property of apoPNPOx-bound PLP suggests a non-Schiff base linkage. HoloPNPOx with tightly bound PLP shows normal catalytic activity, suggesting that the tightly bound PLP is at a noncatalytic site. The tightly bound PLP is readily transferred to aposerine hydroxymethyltransferase in dilute phosphate buffer. However, when the PNPOx. PLP complex was added to aposerine hydroxymethyltransferase suspended in an E. coli extract the rate of reactivation of the apoenzyme was several-fold faster than when free PLP was added. This suggests that PNPOx somehow targets PLP to aposerine hydroxymethyltransferase in vivo.  相似文献   

8.
9.
Pyridoxal 5'-phosphate (pyridoxal-5'-P) has been found to act as a bifunctional reagent during the inactivation of porcine heart cytoplasmic malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37). The biphasic kinetics and X-azolidine-like structure formed were similar to those observed for mitochondrial malate dehydrogenase (Wimmer, M.J., Mo, T., Sawyers, D.L., and Harrison, J.H. (1975) J. Biol. Chem. 250, 710-715). In the cytoplasmic enzyme, however, irreversible inactivation representing X-azolidine formation was found to be the dominant characteristic of the interaction with pyridoxal-5'-P. Spectral evidence indicated that at total inactivation 2 mol of pyridoxal-5'-P were incorporated per mol of enzyme or one pyridoxal-5'-P per enzymatic active site. The presence of NADH protected the enzyme from inactivation suggesting interaction of pyridoxal-5'-P at or near the enzymatic active centers of this enzyme. Fluorometric titrations indicated that pyridoxal-5'-P-inactivated enzyme failed to bind NADH or at least failed to bind NADH in the same fashion as native enzyme.  相似文献   

10.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

11.
12.
13.
14.
Titrations of mitochondrial apo-aspartate aminotransferase with pyridoxal 5'-phosphate in the presence of AMP, contrary to what has been observed in the case of the cytosolic isoenzyme [(1983) FEBS Lett. 153, 98-102], show sigmoidal isotherms, with Hill coefficients ranging from nH = 1.4, in the absence of AMP, to nH = 1.8, in the presence of 5.9 mM AMP. The experimental data were successfully fitted by the Monod-Wyman- Changeaux model. The best fit, in the absence of AMP, was obtained with L = 30, KR = 4.72 X 10(-7) M and KT = 1.18 X 10(-5) M. Binding curves in the presence of AMP fit the model by keeping KR as a constant. This implies that AMP could bind to the apoenzyme only in the T state. In contrast, binding curves in the presence of phosphate ion (Pi) showed a less pronounced cooperativity, the Hill coefficient dropping to nH = 1.0 in the presence of 0.1 mM Pi. The above results suggest a regulatory role of AMP and Pi in the reconstitution of aspartate aminotransferase.  相似文献   

15.
16.
Inhibition of glutamic dehydrogenase by pyridoxal 5'-phosphate   总被引:12,自引:0,他引:12  
  相似文献   

17.
Transducin (T), a guanine nucleotide binding regulatory protein composed of -, -, and -subunits, serves as an intermediary between rhodopsin and cGMP phosphodiesterase during signaling in the visual process. Pyridoxal 5-phosphate (PLP), a reagent that has been used to modify enzymes that bind phosphorylated substrates, was probed here as an affinity label for T. PLP inhibited the guanine nucleotide binding activity of T in a concentration dependent manner, and was covalently incorporated into the protein in the presence of [3H]NaBH4. Approximately 1 mol of 3H was bound per mol of T. GTP and GTP analogs appreciably hindered the incorporation of 3H to T, suggesting that PLP specifically modified the protein active site. Interestingly, PLP modified both the - and -subunits of T. Moreover, PLP in the presence of GDP behaved as a GTP analog, since this mixture was capable of dissociating T from T:photoactivated rhodopsin complexes.  相似文献   

18.
A new and very sensitive fluorometric method for the determination of pyridoxal and pyridoxal 5′-phosphate is reported. The specificity is based on the reductive amination of pyridoxal and its 5′-phosphate with methyl anthranilate and sodium cyanoborohydride at pH 4,5 to 5,0. Separation of the highly fluorescent methyl-N-pyridoxyl anthranilate was achieved by a combination of column and thin-layer chromatography on silica gel. This method has been applied to the assay of pyridoxal and pyridoxal 5′-phosphate in seruum.  相似文献   

19.
20.
Acetylcholinesterase activity was assayed in the absence and presence of pyridoxal 5'-phosphate. If substrate hydrolysis was measured by the pH-stat method, its rate was not significantly affected by pyridoxal 5'-phosphate. In the spectrophotometric assay, however, this compound led to an apparent decrease in rate. The discrepancy between the two assays is explained by stray-light artefacts produced by pyridoxal 5'-phosphate at the wavelengths of the spectrophotometric assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号