首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
MicroRNAs and other tiny endogenous RNAs in C. elegans   总被引:8,自引:0,他引:8  
  相似文献   

4.
Small interfering RNAs regulate gene expression in diverse biological processes, including heterochromatin formation and DNA elimination, developmental regulation, and cell differentiation. In the single-celled eukaryote Entamoeba histolytica, we have identified a population of small RNAs of 27 nt size that (i) have 5′-polyphosphate termini, (ii) map antisense to genes, and (iii) associate with an E. histolytica Piwi-related protein. Whole genome microarray expression analysis revealed that essentially all genes to which antisense small RNAs map were not expressed under trophozoite conditions, the parasite stage from which the small RNAs were cloned. However, a number of these genes were expressed in other E. histolytica strains with an inverse correlation between small RNA and gene expression level, suggesting that these small RNAs mediate silencing of the cognate gene. Overall, our results demonstrate that E. histolytica has an abundant 27 nt small RNA population, with features similar to secondary siRNAs from C. elegans, and which appear to regulate gene expression. These data indicate that a silencing pathway mediated by 5′-polyphosphate siRNAs extends to single-celled eukaryotic organisms.  相似文献   

5.
Evidence is accumulating that small, noncoding RNAs are important regulatory molecules. Computational and experimental searches have led to the identification of ~60 small RNA genes in Escherichia coli. However, most of these studies focused on the intergenic regions and assumed that small RNAs were >50 nt. Thus, the previous screens missed small RNAs encoded on the antisense strand of protein-coding genes and small RNAs of <50 nt. To identify additional small RNAs, we carried out a cloning-based screen focused on RNAs of 30–65 nt. In this screen, we identified RNA species corresponding to fragments of rRNAs, tRNAs and known small RNAs. Several of the small RNAs also corresponded to 5′- and 3′-untranslated regions (UTRs) and internal fragments of mRNAs. Four of the 3′-UTR-derived RNAs were highly abundant and two showed expression patterns that differed from the corresponding mRNAs, suggesting independent functions for the 3′-UTR-derived small RNAs. We also detected three previously unidentified RNAs encoded in intergenic regions and RNAs from the long direct repeat and hok/sok elements. In addition, we identified a few small RNAs that are expressed opposite protein-coding genes and could base pair with 5′ or 3′ ends of the mRNAs with perfect complementarity.  相似文献   

6.
Small RNA pathways act at the front line of defence against transposable elements across the Eukaryota. In animals, Piwi interacting small RNAs (piRNAs) are a crucial arm of this defence. However, the evolutionary relationships among piRNAs and other small RNA pathways targeting transposable elements are poorly resolved. To address this question we sequenced small RNAs from multiple, diverse nematode species, producing the first phylum-wide analysis of how small RNA pathways evolve. Surprisingly, despite their prominence in Caenorhabditis elegans and closely related nematodes, piRNAs are absent in all other nematode lineages. We found that there are at least two evolutionarily distinct mechanisms that compensate for the absence of piRNAs, both involving RNA-dependent RNA polymerases (RdRPs). Whilst one pathway is unique to nematodes, the second involves Dicer-dependent RNA-directed DNA methylation, hitherto unknown in animals, and bears striking similarity to transposon-control mechanisms in fungi and plants. Our results highlight the rapid, context-dependent evolution of small RNA pathways and suggest piRNAs in animals may have replaced an ancient eukaryotic RNA-dependent RNA polymerase pathway to control transposable elements.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Endogenous small interfering RNAs (endo-siRNAs) have been discovered in many organisms, including mammals. In C. elegans, depletion of germline-enriched endo-siRNAs found in complex with the CSR-1 Argonaute protein causes sterility and defects in chromosome segregation in early embryos. We discovered that knockdown of either csr-1, the RNA-dependent RNA polymerase (RdRP) ego-1, or the dicer-related helicase drh-3, leads to defects in histone mRNA processing, resulting in severe depletion of core histone proteins. The maturation of replication-dependent histone mRNAs, unlike that of other mRNAs, requires processing of their 3′UTRs through an endonucleolytic cleavage guided by the U7 snRNA, which is lacking in C. elegans. We found that CSR-1-bound antisense endo-siRNAs match histone mRNAs and mRNA precursors. Consistently, we demonstrate that CSR-1 directly binds to histone mRNA in an ego-1-dependent manner using biotinylated 2′-O-methyl RNA oligonucleotides. Moreover, we demonstrate that increasing the dosage of histone genes rescues the lethality associated with depletion of CSR-1 and EGO-1. These results support a positive and direct effect of RNAi on histone gene expression.  相似文献   

15.
小RNA长度在20~32 nt之间,通过染色质修饰、mRNA降解和翻译抑制来调控基因表达。小RNA可以分为三类:小干扰RNA、微小RNA和piRNAs。小干扰RNA主要抵御转座子和病毒的侵袭。微小RNA的表达受发育水平调控且有组织特异性,在发育和细胞分化中起作用。piRNAs在生殖细胞和干细胞中表达,可使反转座子沉默。综述了这几种小RNA的定义与分类、生成机制、功能及其研究方法。  相似文献   

16.
17.
18.
RNA editing in kinetoplastid protozoa.   总被引:1,自引:0,他引:1  
  相似文献   

19.
Small non-coding RNAs of 18–25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3′ end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号