首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c, DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

2.
The hematological micronucleus test is regarded as an indicator of the clastogenic effect of chemicals and acute cytogenetic damage. The test can be carried out in red blood cells of the bone marrow and of the spleen, as well as in peripheral erythrocytes. We have determined the precise background values of micronucleated red blood cells for the peripheral blood of BALB/c DBA/2, and NMRI mice. Bleeding, phenylhydrazine-induced hemolysis, and splenectomy generated an increase of micronucleated erythrocytes in the peripheral blood of mice. Our data thus demonstrate that such factors should be taken into consideration when the micronucleus test is used for screening the genotoxic potential of chemicals. Furthermore, the micronucleus-inducing effect of cyclophosphamide was studied in normal and splenectomized mice and, in addition, a comparison of the sensitivity of the micronucleus test was carried out in peripheral blood and bone marrow after cyclophosphamide treatment. Our data demonstrate that the kinetics of micronucleus formation were similar in normal and in splenectomized mice in which the micronucleus levels had returned to normal. The comparison of micronucleus formation in bone marrow and peripheral blood after cyclophosphamide treatment revealed the generation of similar quantities of micronucleated red blood cells in both tissues. The physiological mechanisms of micronucleus formation and removal and the potential role of chemically induced spleen damage during this process are discussed; the usefulness of the peripheral micronucleus test as a simple, rapid, and animal-saving modification of the standard bone marrow test is evaluated.Abbreviations CP cyclophosphamide - MN micronuclei - MNCE micronucleated normochromatic erythrocytes - MNPCE micronucleated polychromatic erythrocytes - MNRBC micronucleated red blood cells - NCE normochromatic erythrocytes - PCE polychromatic erythrocytes  相似文献   

3.
Frequencies of micronucleated erythrocytes in the peripheral blood of splenectomized individuals can be used as an index of genetic damage to erythrocyte precursor cells in the bone marrow. This is in contrast to non-splenectomized humans, whose micronucleated erythrocytes are removed by the spleen. Many subjects whose spleen has been removed surgically have residual spleen tissue and consequent residual spleen function (RSF), which can be measured by the percentage of 'pitted' peripheral red blood cells. In this study evidence of RSF was associated with decreased frequencies of micronucleated erythrocytes. Analysis of data limited to subjects with minimal spleen function suggested an inverse association between the incidence of micronucleated erythrocytes and serum folate levels that was not apparent in the absence of stringent control for RSF.  相似文献   

4.
Micronucleated erythrocytes are selectively removed from the peripheral circulation of normal rats. Splenectomy prevents this selective removal. In normal rats treated daily for 20 days with 0.2 mg/kg triethylenemelamine (TEM), micronucleated normochromatic (mature) erythrocytes did not accumulate in peripheral blood. In these same animals, the frequencies of micronucleated cells among polychromatic (newly formed) erythrocytes increased from 0.21 to 5.25 per thousand in peripheral blood and from 1.75 to 31.5 per thousand in bone marrow. Since both control and induced frequencies in peripheral blood were approximately 15% of those in bone marrow, the removal appears to be equally efficient for cells containing either spontaneously occurring or clastogen-induced micronuclei. In splenectomized rats treated daily for 11 days with 0.2 mg/kg TEM, the frequency of micronucleated normochromatic erythrocytes (NCEs) in the peripheral blood rose rapidly to 9 times the control value and remained elevated for 50-55 days, indicating a life span approximately equivalent to that of normal erythrocytes. Among splenectomized rats exposed to either 0.15 mg/kg triethylenemelamine, 6.5 mg/kg cyclophosphamide, or 300 mg/kg urethane for periods exceeding the erythrocyte life span, the incidences of micronucleated NCEs in the peripheral blood rose steadily from a control value of 1.0 per thousand to maximum values of 15.0, 12.7 and 8.9 per thousand, respectively. During these extended exposures, the mean frequencies of micronucleated polychromatic erythrocytes (PCEs) in peripheral blood increased from a spontaneous value of 0.9 per thousand to 23.0, 13.0 and 6.6 per thousand, respectively, reflecting the frequencies among PCEs in the bone marrow and approximating the maximum values among NCEs in the peripheral blood. Thus, the frequency of micronucleated erythrocytes in the peripheral blood of splenectomized rats can be used as an index of both acute and cumulative chromosomal damage, while in normal rats the use of peripheral blood for cytogenetic monitoring is restricted by the selective removal of these micronucleated cells.  相似文献   

5.
Three thiocarbamate herbicides, butylate (S-ethyl-diisobutylthiocarbamate), vernolate (S-propyl dipropylthiocarbamate) and molinate (S-ethyl-N,N-hexamethylenethiocarbamate) were assayed for cytogenetic effect in the mouse bone marrow micronucleus test. Butylate was inactive in bone marrow, vernolate caused a marginal increase in the incidence of micronucleated polychromatic erythrocytes only at a high toxic dose level. Molinate, the N,N-hexamethylene derivative was, however, strongly active in the bone marrow, causing a high frequency of micronucleated erythrocytes, even at subtoxic concentrations.  相似文献   

6.
The frequency of micronucleated polychromatic erythrocytes (fMPCE) was determined in samples from bone marrow, spleen and peripheral blood of rats exposed to low doses of X-rays, cyclophosphamide or vincristine. The fMPCE values were lower in the peripheral blood than in bone marrow or spleen. This is due to the elimination of MPCE from the circulating blood, which was confirmed by the results from prolonged exposure of rats to gamma-radiation. When the analysis was restricted to the youngest PCE in peripheral blood, the sensitivity of the assay was considerably improved. This can be reproducibly achieved with the flow cytometric analysis.  相似文献   

7.
Summary The induction of cytogenetic damage (micronuclei) in mouse fetal blood was studied with four selected mutagens: cyclophosphamide, procarbazine, trenimon, and mitomycin-C. For comparison the standard micronucleus test on maternal bone marrow was also performed. In contrast to the results obtained from maternal bone marrow the changes in the cellular composition in fetal blood were only slight after treatment with mutagens. A significant and dosepdependent increase in the incidence of micronucleated fetal blood cells was found with all four mutagens. The inducibility of micronuclei by indirect mutagens was particularly interesting. The three mutagens other than mitomycin-C induced a higher frequency of micronucleated polychromatic erythrocytes in fetal blood cells than in maternal bone marrow. The results indicate that this modified micronucleus test is well suited and useful for mutagenicity screening of environmental chemicals and especially for assessment of risks to the fetus when pregnant females are exposed to environmental chemicals.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg  相似文献   

8.
It used to be believed that the use of rat peripheral blood for the micronucleus assay would be difficult because micronucleated erythrocytes are captured and destroyed by the spleen quickly. We have applied an acridine orange (AO) supravital staining method to rat peripheral blood using AO-coated glass slides. Normal and splenectomized SD rats were treated once with mitomycin C (i.p.) or cyclophosphamide (p.o.), and 5 microliters of blood was collected at intervals from the tail vein between 0 and 72 h after treatment. For comparison, bone marrow cells were smeared conventionally 30 h after treatment. Although the frequencies of spontaneous and chemically induced micronucleated reticulocytes (MNRETs) from normal rats were lower on average in the highest dose group than those of splenectomized rats, the incidence of micronuclei among type I and II reticulocytes in normal rats at 48 h was almost identical to the incidence of RNA-containing erythrocytes with micronucleus in bone marrow. Thus, we suggest that rat peripheral reticulocytes can be used as target cells for the micronucleus assay.  相似文献   

9.
It used to be believed that the use of rat peripheral blood for the micronucleus assay would be difficult because micronucleated erythrocytes are captured and destroyed by the spleen quickly. We have applied an acridine orange (AO) supravital staining method to rat peripheral blood using AO-coated glass slides. Normal and splenectomized SD rats were treated once with mitomycin C (i.p.) or cyclophosphamide (p.o.), and 5 μl of blood was collected at intervals from the tail vein between 0 and 72 h after treatment. For comparison, bone marrow cells were smeared conventionally 30 h after treatment. Although the frequencies of spontaneous and chemically induced micronucleated reticulocytes (MNRETs) from normal rats were lower on average in the highest dose group than those of splenectomized rats, the incidence of micronuclei among type I and II reticulocytes in normal rats at 48 h was almost identical to the incidence of RNA-containing erythrocytes with micronucleus in bone marrow. Thus, we suggest that rat peripheral reticulocytes can be used as target cells for the micronucleus assay.  相似文献   

10.
Ultra-vital staining with acridine orange (AO) is introduced into the micronucleus assay with mouse peripheral blood cells. Peripheral blood was stained vitally by dropping whole blood on an AO-coated slide and covering the sample with a coverslip. With this method, reticulocytes are identified easily by their red fluorescing reticulum structure. The distinction between young and mature erythrocytes was clearer and less subjective than the distinction between polychromatic and normochromatic erythrocytes by Giemsa staining or by conventional AO fluorescent staining. Although the induction of micronucleated peripheral reticulocytes (MNRETs) was delayed by about 12 h compared to that of micronucleated polychromatic erythrocytes (MNPCEs) in the bone marrow, the frequencies of MNRETs and MNPCEs were almost identical at each optimal sampling time. It is concluded that bone marrow cells can be replaced by peripheral blood as material for the micronucleus assay.  相似文献   

11.
Ionizing radiation is known to produce a variety of cellular and sub cellular damage in both prokaryotic and eukaryotic cells. Present studies were undertaken to assess gamma ray induced DNA damage in different organs of the chick embryo using alkaline comet assay and peripheral blood micronucleus test. Further the suitability of chick embryo, as an alternative model for genotoxicity evaluation of environmental agents was assessed. Fertilized eggs of Rhode island red strain were exposed to 0.5, 1 and 2 Gy of gamma rays delivered at a dose rate of 0.316 Gy/min using a 60Co teletherapy machine. Peripheral blood smears were prepared from 8- to 11-day-old chick embryos for micronucleus test. Alkaline comet assay was performed on 11-day-old chick embryos in different organs such as the heart, liver, lung, blood, bone marrow, brain and kidney.Analysis of the data revealed a significant increase in the frequency of micronucleated polychromatic erythrocytes, micronucleated normochromatic erythrocytes and total micronucleated erythrocytes in the peripheral blood of gamma irradiated chick embryos at all the doses tested as compared to the respective controls. The polychromatic to normochromatic erythrocytes ratio which is an indicator of proliferation rate of hematopoetic tissue, decreased in the irradiated groups as compared to the controls. Data obtained from comet assay, clearly demonstrated a significant increase in DNA strand breaks in all the organs of irradiated chick embryos as compared to the respective controls. However, maximum damage was observed in the heart tissue on all the doses tested, followed by kidney, brain, lung, blood and liver. The lowest damage was observed in the bone marrow tissue. Both micronucleus test and comet assay were found to be suitable biomarkers for the evaluation of genotoxicity of gamma radiation in the chick embryo.  相似文献   

12.
N Asano  T Hagiwara 《Mutation research》1992,278(2-3):153-157
The peripheral blood micronucleus test using the acridine orange (AO) supravital staining method was validated with the potent bone marrow clastogen 2-acetylaminofluorene (2-AAF). 2-AAF induced micronuclei in peripheral blood reticulocytes dose-dependently as well as in bone marrow polychromatic erythrocytes. The incidence of micronucleated reticulocytes (MNRETs) peaked 48 h after a single treatment in both CD-1 and BDF1 mice, and the incidence of micronucleated polychromatic erythrocytes (MNPCEs) peaked 24 or 48 h after treatment. The maximum incidences of MNRETs were always higher than those of MNPCEs in both mouse strains treated once. In the double-treatment regime, the maximum incidence of MNRETs was observed at 24 h after the second treatment in each strain. The incidences of MNRETs in BDF1 mice were higher than in CD-1 mice after a single treatment but were comparable after double treatment. These results indicate that the peripheral blood micronucleus test using AO supravital staining is as sensitive as the conventional bone marrow assay. The new staining method can be performed more easily than the original smear method using either bone marrow or peripheral blood cells. Thus, the peripheral blood method using AO supravital staining is a possible alternative to the conventional bone marrow assay.  相似文献   

13.
Dose-dependent induction of micronuclei with 1-beta-D-arabinofuranosylcytosine (ara-C) was clearly shown in CD-1 mouse peripheral blood reticulocytes (RETs) using an acridine orange (AO) supravital staining method, as well as in the conventional bone marrow assay. The maximum frequencies of micronucleated RETs (MNRETs) in peripheral blood and of micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow were comparable, as shown in two laboratories independently. The maximum frequencies of MNRETs in peripheral blood lagged about 24 and 12 h behind those of MNPCEs in bone marrow in experiments with 24- and 12-h sampling intervals, respectively. The proportion of each type of RET was examined periodically after treatment with ara-C at doses ranging from 6.25 to 50.0 mg/kg. The proportion of type I RETs among total RETs decreased 24 or 48 h after treatment according to the dose level. This suggest that this ratio could be a good indicator of the bone marrow cell toxicity of test chemicals.  相似文献   

14.
Induction of micronuclei by mitomycin C (MMC) in mouse bone marrow cells was suppressed by post-treatment with vanillin, a component of vanilla essence flavour. Vanillin was given orally to mice 7.5 h after intraperitoneal injection of 2 mg/kg MMC. Post-treatment with vanillin at 500 mg/kg caused about 50% decrease in the frequency of micronucleated polychromatic erythrocytes (MN-PCEs). The effect of vanillin administration on the time-course of formation of MN-PCEs was also investigated. The suppressing effect was not due to a delay in the formation of MN-PCEs by the cytotoxic action of vanillin. Vanillin acts as an anticlastogenic factor in vivo.  相似文献   

15.
The peripheral blood micronucleus test using the acridine orange (AO) supravital staining method was validated with the potent bone marrow clastogen 2-acetylaminofluorene (2-AAF). 2-AAF induced micronuclei in peripheral blood reticuiocytes dose-dependently as well as in bone marrow polychromatic erythrocytes. The incidence of micronucleated reticuiocytes (MNRETs) peaked 48 h after a single treatment in both CD-1 and BDF1 mice, and the incidence of micronucleated polychromatic erythrocytes (MNPCEs) peaked 24 or 48 h after treatment. The maximum incidences of MNRETs were always higher than those of MNPCEs in both mouse strains treated once. In the double-treatment regime, the maximum incidence of MNRETs was observed at 24 h after the second treatment in each strain. The incidences of MNRETs in BDF1 mice were higher than in CD-1 mice after a single treatment but were comparable after double treatment.These results indicate that the peripheral blood micronucleus test using AO supravital staining is as sensitive as the conventional bone marrow assay. The new staining method can be performed more easily than the original smear method using either bone marrow or peripheral blood cells. Thus, the peripheral blood method using AO supravital staining is a possible alternative to the conventional bone marrow assay.  相似文献   

16.
The mutagenic activity of vastak and durs ban pesticides was studied by the micronucleus test in mouse bone marrow. The frequency of micronuclei in polychromatic erythrocytes was tested at 24, 36 and 42 h after oral administration of 50% LD50 dose of vastak (14 mg/kg) and durs ban (30.5 mg/kg). Significantly different increase in micronucleated polychromatic erythrocytes was established at 24, 36 and 48 h after vastak administration, and at 24 and 36 h after durs ban treatment. Doses of 25% LD50 for both pesticides showed no mutagenic activity, as judged by the induction of micronuclei in polychromatic erythrocytes.  相似文献   

17.
In vivo cytogenetic effects of cooked food mutagens   总被引:3,自引:0,他引:3  
Using a variety of in vivo cytogenetic endpoints, we have investigated the effects of several compounds formed during the cooking of meat. C57Bl/6 mice were used to test for an increase in the frequency of sister-chromatid exchanges (SCEs), chromosomal aberrations, and micronucleated erythrocytes by 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx), and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). MeIQx and DiMeIQx did not induce SCEs in mouse bone marrow cells. PhIP induced sister-chromatid exchanges, but not chromosomal aberrations in bone marrow. In peripheral blood lymphocytes, PhIP did induce aberrations at 100 mg/kg, the highest dose tested. PhIP induced a low but significantly increased frequency of micronuclei in normochromatic but not polychromatic erythrocytes in bone marrow and peripheral blood. However, dose responses were not observed. With the exception of the SCEs induced by PhIP, these results contrast with observations made in vitro, where these compounds were found to have significant genotoxicity in mammalian cells and a very high mutation frequency in prokaryotic systems.  相似文献   

18.
The time-course of micronucleated polychromatic erythrocytes (MPCE) in mouse bone marrow and peripheral blood, induced by an acute 0.1 Gy dose of X-rays, was determined using flow cytometric analysis, which made frequent sampling possible and allowed use of a dose low enough not to affect erythroid cell proliferation. The frequency of MPCE (fMPCE) began to increase in the bone marrow at 10 h after irradiation and reached a maximum at 28 h after irradiation. In the peripheral blood fMPCE began to increase at 20 h after irradiation and peaked at about 40 h after irradiation. The time-course found is discussed on the basis of data on the differentiation of erythroid cells. The results indicate that the micronuclei registered in polychromatic erythrocytes may originate from lesions induced not only during the last cell cycle but also during earlier ones. After an acute dose of 1.0 Gy of X-rays the maximum fMPCE was delayed both in bone marrow and peripheral blood reflecting an effect on the cell cycle progression of erythroblasts.  相似文献   

19.
The usefulness of the micronucleus test using supravital staining of peripheral blood reticulocytes with acridine orange was evaluated in two laboratories after administering cyclophosphamide (CYP) as a model chemical by intraperitoneal injection (i.p.) to CD-1 mice. The frequencies of micronucleated peripheral reticulocytes (MNRETs) increased dose-dependently at each sampling time. There were no significant differences in the results obtained with this new method by the two laboratories. Although the induction of MNRETs was delayed by about 24 h compared to that of micronucleated polychromatic erythrocytes (MNPCEs) in the bone marrow, the frequencies of MNRETs and MNPCEs were almost identical at each optical sampling time, 24 h for MNPCEs and 48 h for MNRETs. Therefore, it is concluded that this method is a suitable alternative to that using femoral marrow cells.  相似文献   

20.
Erythrocyte-based micronucleus tests have traditionally been performed with bone marrow specimens, since, in most preclinical animal models, the spleen can efficiently remove aberrant erythrocytes from the circulation. Even so, evidence is mounting that by examining tens of thousands of young (CD71-positive) circulating reticulocytes for the presence of micronuclei via flow cytometry, a sensitive assay of cytogenetic damage is realized. The work described herein was designed to test this hypothesis further, using an important preclinical toxicology model, the beagle dog. In these experiments, purebred male beagles were treated for five consecutive days with cyclophosphamide (0, 6.25, 12.5 or 25mg/m(2)/day) or for two consecutive days with etoposide (0, 1.56, 6.25 or 12.5mg/m(2)/day). Before treatment, and on each day of administration, blood specimens were collected and processed for flow cytometric scoring of micronucleated reticulocyte (MN-RET) frequency. Twenty-four hours after the final administration, blood MN-RET frequencies were determined via flow cytometry, and frequencies of micronucleated bone marrow polychromatic erythrocytes (MN-PCE) were determined using acridine orange and May-Grunwald Giemsa staining. In the case of cyclophosphamide, elevated blood MN-RET frequencies were observed 2 days after treatment began, and the maximal frequency was achieved 1 day later. Similarly, etoposide-induced blood MN-RET were not evident 1 day after administration began, but a robust effect was apparent 2 days after treatments were initiated. Twenty-four hours after the final administrations, dose-related micronucleus responses were evident for both agents and in both blood and bone marrow compartments. Good overall agreement between MN-RET and MN-PCE frequencies was evidenced by high Spearman's correlation coefficients-0.89 for blood flow cytometry versus bone marrow acridine orange staining and 0.83 for blood flow cytometry versus bone marrow May-Grunwald Giemsa staining. Taken together, these results provide further support for the cross-species utility of flow cytometry-based blood MN-RET measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号