首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Glycogen synthase kinase 3β (GSK3β) is increased by high glucose in mesangial cells. Thus, we studied the role of GSK3β in advanced glycation end-product (AGE)-induced effects in the proximal tubule-like LLC-PK1 cells. We found that AGE (100 μg/ml) time-dependently (8-48 h) increased phospho-GSK3β-Tyr216 (active GSK3β) and time-dependently (4-24 h) decreased phospho-GSK3β-Ser21/9 (inactive GSK3β) protein expression. Meanwhile, AGE (100 μg/ml) activated GSK3β kinase at 8-48 h. AGE (100 μg/ml) dose-dependently (75-100 μg/ml) decreased β-catenin protein expression but AGE did not decrease β-catenin protein expression until 48 h. SB216763 (a GSK3β inhibitor) and GSK3β shRNA attenuated AGE (100 μg/ml)-inhibited cell proliferation and protein expression of β-catenin and cyclin D1 at 48 h. SB216763 also attenuated AGE-induced type IV collagen. We conclude that AGE activates GSK3β in LLC-PK1 cells. AGE-inhibited β-catenin and cyclin D1 protein expression are dependent on GSK3β. Moreover, AGE-inhibited cell proliferation and AGE-induced type IV collagen protein expression are dependent on GSK3β.  相似文献   

2.
Chinese hamster ovary cells have been engineered to inducibly over-express the p21(CIP1) cyclin-dependent kinase inhibitor, to achieve cell cycle arrest and increase cell productivity. In p21(CIP1)-arrested cells production of antibody from a stably integrated lgG4 gene, was enhanced approximately fourfold. The underlying physiological basis for enhanced productivity was investigated by measuring a range of cellular and metabolic parameters. Interestingly, the average cell volume of arrested cells was approximately fourfold greater than that of proliferating cells. This was accompanied by significant increases in mitochondrial mass, mitochondrial activity, and ribosomal protein S6 levels. Our results suggest that p21(CIP1)-induced cell cycle arrest uncouples cell growth from cell-cycle progression, and provides new insight into how improved productivity can be achieved in a cell line commonly used for large-scale production of pharmaceutical proteins.  相似文献   

3.
Kim TJ  Kang YJ  Lim Y  Lee HW  Bae K  Lee YS  Yoo JM  Yoo HS  Yun YP 《Experimental cell research》2011,317(14):2041-2051
Ceramide 1-phosphate (C1P) is a novel bioactive sphingolipid formed by ceramide kinase (CERK)-catalyzed phosphorylation of ceramide. It has been implicated in the regulation of such vital pathophysiological functions as phagocytosis and inflammation, but there have been no reports ascribing a biological function to CERK in vascular disorders. Here the potential role of CERK/C1P in neointimal formation was investigated using rat aortic vascular smooth muscle cells (VSMCs) in primary culture and a rat carotid injury model. Exogenous C8-C1P stimulated cell proliferation, DNA synthesis, and cell cycle progression of rat aortic VSMCs in primary culture. In addition, wild-type CERK-transfected rat aortic VSMCs induced a marked increase in rat aortic VSMC proliferation and [3H]-thymidine incorporation when compared to empty vector transfectant. C8-C1P markedly activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) within 5 min, and the activation could be prevented by U0126, a MEK inhibitor. Also, K1, a CERK inhibitor, decreased the ERK1/2 phosphorylation and cell proliferation on platelet-derived growth factor (PDGF)-stimulated rat aortic VSMCs. CERK expression and C1P levels were found to be potently increased during neointimal formation using a rat carotid injury model. However, ceramide levels decreased during the neointimal formation process. These findings suggest that C1P can induce neointimal formation via cell proliferation through the regulation of the ERK1/2 protein in rat aortic VSMCs and that CERK/C1P may regulate VSMC proliferation as an important pathogenic marker in the development of cardiovascular disorders.  相似文献   

4.
Thrombin, a G protein-coupled receptor agonist, induced a biphasic expression of cyclin D1 in primary vascular smooth muscle cells. Although both phases of cyclin D1 expression require binding of the newly identified cooperative complex, NFATc1·STAT-3, to its promoter, the second phase, which is more robust, depends on NFATc1-mediated recruitment of p300 onto the complex and the subsequent acetylation of STAT-3. In addition, STAT-3 is tyrosine-phosphorylated in a biphasic manner, and the late phase requires NFATc1-mediated p300-dependent acetylation. Furthermore, interference with acetylation of STAT-3 by overexpression of acetylation null STAT-3 mutant led to the loss of the late phase of cyclin D1 expression. EMSA analysis and reporter gene assays revealed that NFATc1·STAT-3 complex binding to the cyclin D1 promoter led to an enhanceosome formation and facilitated cyclin D1 expression. In the early phase of its expression, cyclin D1 is localized mostly in the cytoplasm and influenced cell migration. However, during the late and robust phase of its expression, cyclin D1 is translocated to the nucleus and directed cell proliferation. Together, these results demonstrate for the first time that the dual function of cyclin D1 in cell migration and proliferation is temperospatially separated by its biphasic expression, which is mediated by cooperative interactions between NFATc1 and STAT-3.  相似文献   

5.
The Ca(2+) signaling pathway appears to regulate the processes of the early development through its antagonism of canonical Wnt/β-catenin signaling pathway. However, the underlying mechanism is still poorly understood. Here, we show that nuclear factor of activated T cells (NFAT), a component of Ca(2+) signaling, interacts directly with Dishevelled (Dvl) in a Ca(2+)-dependent manner. A dominant negative form of NFAT rescued the inhibition of the Wnt/β-catenin pathway triggered by the Ca(2+) signal. NFAT functioned downstream of β-catenin without interfering with its stability, but influencing the interaction of β-catenin with Dvl by its competitively binding to Dvl. Furthermore, we demonstrate that NFAT is a regulator in the proliferation and differentiation of neural progenitor cells by modulating canonical Wnt/β-catenin signaling pathway in the neural tube of chick embryo. Our findings suggest that NFAT negatively regulates canonical Wnt/β-catenin signaling by binding to Dvl, thereby participating in vertebrate neurogenesis.  相似文献   

6.
7.
Wang Y  Feng H  Bi C  Zhu L  Pollard JW  Chen B 《FEBS letters》2007,581(16):3069-3075
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium.  相似文献   

8.
9.
Laezza C  Pisanti S  Crescenzi E  Bifulco M 《FEBS letters》2006,580(26):6076-6082
This study was designed to determine the molecular mechanisms underlying the anti-proliferative effect of the endocannabinoid anandamide on highly invasive human breast cancer cells, MDA-MB-231. We show that a metabolically stable analogue of anandamide, Met-F-AEA, induces an S phase growth arrest correlated with Chk1 activation, Cdc25A degradation and suppression of Cdk2 activity. These findings demonstrate that Met-F-AEA induced cell cycle blockade relies on modulated expression and activity of key S phase regulatory proteins. The observed mechanism of action, already reported for well-known chemotherapeutic drugs, provides strong evidence for a direct role of anandamide related compounds in the activation of cell cycle checkpoints.  相似文献   

10.
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.  相似文献   

11.
Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号