首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the development of self-peptide-specific CD4+ CD25+ regulatory T cells in lineages of transgenic mice that express the influenza virus PR8 hemagglutinin (HA) under the control of several different promoters (HA transgenic mice). By mating these lineages with TS1-transgenic mice expressing a TCR that recognizes the major I-E(d)-restricted determinant from HA (site 1 (S1)), we show that S1-specific T cells undergo selection to become CD4+ CD25+ regulatory T cells in each of the lineages, although in varying numbers. In some lineages, S1-specific CD4+ CD25+ regulatory T cells are highly abundant; indeed, TS1xHA-transgenic mice can contain as many S1-specific CD4+ T cells as are present in TS1 mice, which do not express the neo-self HA. In another lineage, however, S1-specific thymocytes are subjected to more extensive deletion and far fewer S1-specific CD4+ CD25+ regulatory T cells accumulate in the periphery. We show that radioresistant stromal cells can direct both deletion and CD4+ CD25+ regulatory T cell selection of S1-specific thymocytes. Interestingly, even though their numbers can vary, the S1-specific CD4+ CD25+ regulatory T cells in all cases coexist with clonally related CD4+ CD25- T cells that lack regulatory function. These findings show that the formation of the CD4+ CD25+ regulatory T cell repertoire is sensitive to variations in the expression of self-peptides.  相似文献   

2.
We have examined factors governing the negative selection of autoreactive CD4(+) T cells in transgenic mice expressing low (HA12 mice) vs. high (HA104 mice) amounts of the influenza virus hemagglutinin (HA). When mated with TS1 mice that express a transgenic TCR specific for the I-Ed-restricted determinant site 1 (S1) of HA, thymocytes expressing high levels of the clonotypic TCR were deleted in both HA-transgenic lineages. However, through allelic inclusion, thymocytes with lower levels of the clonotypic TCR evaded deletion in TS1 x HA12 and TS1 x HA104 mice to graded degrees. Moreover, in both lineages, peripheral CD4(+) T cells could be activated by the S1 peptide in vitro, and by influenza virus in vivo. These findings indicate that allelic inclusion can allow autoreactive CD4(+) thymocytes to evade thymic deletion to varying extents reflecting variation in the expression of the self peptide, and can provide a basis for the activation of autoreactive peripheral T cells by viruses bearing homologues of self peptides ("molecular mimicry").  相似文献   

3.
This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.  相似文献   

4.
Induction of molecular chimerism following reconstitution of mice with autologous bone marrow cells expressing a retrovirally encoded allogeneic MHC class I Ag results in donor-specific tolerance. To investigate the mechanism by which CD4 T cells that recognize allogeneic MHC class I through the indirect pathway of Ag presentation are rendered tolerant in molecular chimeras, transgenic mice expressing a TCR on CD4 T cells specific for peptides derived from K(b) were used. CD4 T cells expressing the transgenic TCR were detected in mice reconstituted with bone marrow cells transduced with retroviruses carrying the gene encoding H-2K(b), albeit detection was at lower levels than in mice receiving mock-transduced bone marrow. Despite the presence of CD4 T cells expressing an alloreactive TCR, mice receiving H-2K(b)-transduced bone marrow permanently accepted K(b) disparate skin grafts. CD4+CD25+ T cells from mice reconstituted with H-2K(b)-transduced bone marrow prevented rejection of K(b) disparate skin grafts when adoptively transferred into immunodeficient mice along with effector T cells, suggesting that induction of molecular chimerism leads to the generation of donor specific regulatory T cells, which may be involved in preventing alloreactive CD4 T cell responses that lead to rejection.  相似文献   

5.
In cyclophosphamide (CP)-induced tolerance, a long lasting skin allograft tolerance was established in many H-2-identical strain combinations without graft vs host disease. Destruction of donor-reactive T cells of host origin, followed by intrathymic clonal deletion of these cells, has been revealed to be the chief mechanisms of this system. Here, we studied the fate of host-reactive populations in donor-derived T cells of C3H/He (C3H) (H-2k, Mls-1b, Mls-2a) mice rendered CP-induced tolerant to AKR/J (AKR) (H-2k, Mls-1a, Mls-2b), by assessing AKR-derived Thy-1.1+ T cells bearing TCR V beta 3 that are specifically reactive with Mls-2a-encoded Ag of the recipient C3H mice. In the AKR-derived Thy-1.1+ lymph node cells of the C3H mice that had been treated with AKR spleen cells plus CP, CD4(+)-V beta 3+ T cells were obviously decreased by day 10 after the CP treatment. At this stage, the Thy-1.1+ T cells were not detected in the C3H thymus, suggesting that the obvious decrease of CD4(+)-V beta 3+ T cells of AKR origin was not due to intrathymic clonal deletion in the recipient C3H mice. Therefore, the destruction of the host-reactive mature T cells of donor origin, as well as that of the donor-reactive mature T cells of host origin, occurred by the CP treatment at the induction phase. Furthermore, after the establishment of intrathymic mixed chimerism in the recipient C3H mice, V beta 3+ T cells were not detected among the Thy-1.1+ T cells of AKR origin in the mixed chimeric thymus, suggesting that the host-reactive immature T cells repopulated from the injected donor hematopoietic cells were clonally deleted in the recipient thymus. These two mechanisms appear to prevent graft vs host disease in CP-induced tolerance.  相似文献   

6.
We have used TCR transgenic mice directed to different MHC class II-restricted determinants from the influenza virus hemagglutinin (HA) to analyze how specificity for self-peptides can shape CD4+CD25+ regulatory T (Treg) cell formation. We show that substantial increases in the number of CD4+CD25+ Treg cells can occur when an autoreactive TCR directed to a major I-E(d)-restricted determinant from HA develops in mice expressing HA as a self-Ag, and that the efficiency of this process is largely unaffected by the ability to coexpress additional TCR alpha-chains. This increased formation of CD4+CD25+ Treg cells in the presence of the self-peptide argues against models that postulate selective survival rather than induced formation as mechanisms of CD4+CD25+ Treg cell formation. In contrast, T cells bearing a TCR directed to a major I-A(d)-restricted determinant from HA underwent little or no selection to become CD4+CD25+ Treg cells in mice expressing HA as a self-Ag, correlating with inefficient processing and presentation of the peptide from the neo-self-HA polypeptide. These findings show that interactions with a self-peptide can induce thymocytes to differentiate along a pathway to become CD4+CD25+ Treg cells, and that peptide editing by DM molecules may help bias the CD4+CD25+ Treg cell repertoire away from self-peptides that associate weakly with MHC class II molecules.  相似文献   

7.
Thymocytes fail to tolerize the developing T cell repertoire to self MHC class I (MHC I) Ags because transgenic (CD2Kb) mice expressing H-2Kb solely in lymphoid cell lineages reject skin grafts mismatched only for H-2Kb. In this study, we examined why thymocytes fail to tolerize the T cell repertoire to self MHC I Ags. The ability of CD2Kb mice to reject H-2Kb skin grafts was age dependent because CD2Kb mice older than 20 wk accepted skin grafts. T cells from younger CD2Kb mice proliferated, but did not develop cytotoxic functions in vitro in response to H-2Kb. Proliferative responses were dominated by H-2Kb-specific, CD4+ T cells rather than CD8+ T cells. Representative CD4+ T cell clones from CD2Kb mice were MHC II restricted and recognized processed H-2Kb. TCR transgenic mice were generated from one CD4+ T cell clone (361) to monitor development of H-2Kb-specific immature thymocytes when all thymic cells or lymphoid cell lineages only expressed H-2Kb. Thymocyte precursors were not eliminated and mice were not tolerant to H-2Kb when Tg361 TCR transgenic mice were intercrossed with CD2Kb mice. In contrast, all thymocyte precursors were eliminated efficiently in thymic microenvironments in which all cells expressed H-2Kb. We conclude that self MHC I Ags expressed exclusively in thymocytes do not induce T cell tolerance because presentation of processed self MHC I Ags on self MHC II molecules fails to induce negative selection of CD4+ T cell precursors. This suggests that some self Ags are effectively compartmentalized and cannot induce self-tolerance in the T cell repertoire.  相似文献   

8.
Specific and selective immunological unresponsiveness to donor alloantigens can be induced in vivo. We have shown previously that CD25+CD4+ T cells from mice exhibiting long-term operational tolerance to donor alloantigens can regulate rejection of allogeneic skin grafts mediated by CD45RB(high)CD4+ T cells. In this study, we wished to determine whether donor-specific regulatory cells can be generated during the induction phase of unresponsiveness, i.e., before transplantation. We provide evidence that pretreatment with anti-CD4 Ab plus a donor-specific transfusion generates donor-specific regulatory CD25+CD4+ T cells that can suppress rejection of skin grafts mediated by naive CD45RB(high)CD4+ T cells. Regulatory cells were contained only in the CD25+ fraction, as equivalent numbers of CD25-CD4+ T cells were unable to regulate rejection. This pretreatment strategy led to increased expression of CD122 by the CD25+CD4+ T cells. Blockade of both the IL-10 and CTLA-4 pathways abrogated immunoregulation mediated by CD25+ T cells, suggesting that IL-10 and CTLA-4 are required for the functional activity of this population of immunoregulatory T cells. In clinical transplantation, the generation of regulatory T cells that could provide dynamic control of rejection responses is a possible route to permanent graft survival without the need for long-term immunosuppression.  相似文献   

9.
Previous work has shown that abrogation of oral tolerance is mediated by T cells which are found in the CD3+, L3T4- (CD4-), and Lyt-2- (CD8-) subset (termed double-negative; DN) in mice. Inasmuch as it is known that athymic, nude (nu/nu) mice possess Thy 1+, CD4-, and CD8- T cells which also exhibit a functionally rearranged TCR gamma-chain, we investigated whether this subset of nude T cells contained functional immunoregulatory cells. In this report, we examined the phenotype and distribution of CD3+ T cells in the spleen and in the mesenteric and peripheral lymph nodes of BALB/c nu/nu mice in comparison with normal mice (+/+). In the spleens of nude mice, the predominant CD3+ T cell subpopulation was DN. Further, in mesenteric and peripheral lymph nodes, approximately one-third and one-half of the CD3+ T cells were double negative, respectively. In contrast, CD3+, DN T cells represent a small subpopulation in normal (+/+) mice. We next showed that functional regulatory T cells which possess the ability to abrogate oral tolerance were induced in nu/nu mice by Ag priming. BALB/c nude mice were immunized with SRBC, and the splenic CD3+, Vicia villosa-adherent cells were obtained by panning. Adoptive transfer of CD3+, V. villosa-adherent T cells to orally tolerant BALB/c mice restored responsiveness to SRBC, whereas V. villosa nonadherent cells were without effect. In other experiments, CD3+ T cells from the spleens of SRBC-primed mice were further enriched for the CD5+, DN phenotype and adoptive transfer of this subset completely abrogated oral tolerance to SRBC. To characterize the nature of the TCR expressed on these CD3+, DN T cells, we developed a rabbit antibody to a synthetic peptide (residues 209-218: Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) which was synthesized from a deduced sequence of the murine delta-gene. Immunoprecipitation of a cell membrane fraction from CD3+, DN T cells with anti-delta TCR antibody isolated a 45-kDa band. Furthermore, immunoprecipitation of these cells with anti-CD3 (145-2C11) revealed bands at 45 and 35 kDa (corresponding to delta- and gamma-chains, respectively). Taken together, these results are the first to show that gamma delta-TCR bearing CD3+, CD4-, and CD8- T cells are functional and reverse oral tolerance when adoptively transferred.  相似文献   

10.
The mechanisms of cyclophosphamide (CP)-induced tolerance were investigated by comparing with those of neonatally induced tolerance. When C3H/He Slc (C3H; H-2k, Mls-1b) mice were given i.v. either AKR/J Sea (AKR; H-2k, Mls-1a) or (AKR x C3H)F1 (AKC3F1; H-2k, Mls-1a/b) spleen cells and treated i.p. with CP 2 days later, a long-lasting skin allograft tolerance to AKR was induced in each case without any signs of graft-vs-host disease (GVHD). However, typical signs of GVHD were observed in the C3H mice neonatally tolerized with AKR spleen cells, but not in those tolerized with AKC3F1 spleen cells. The expression of TCR V beta 6, which is strongly correlated with the reactivity to Mls-1a Ag (of donor AKR origin), in the periphery was quite different between the two types of tolerant C3H mice. Namely, in the lymph nodes of the C3H mice tolerized with AKR spleen cells and CP, only CD4(+)-V beta 6+, but not CD8(+)-V beta 6+, T cells selectively disappeared, whereas both of them were abrogated in the lymph nodes of the C3H mice neonatally tolerized of AKR. By contrast, in the thymus of the two types of tolerant C3H mice, both CD4+CD8- and CD4-CD8+ single-positive thymocytes expressing TCR V beta 6 were clonally deleted, suggesting that the thymic involvement was the same in each type of tolerance. These results suggest that the preferential disappearance of the CD4(+)-V beta 6+ T cells (of host origin) and the effector T cells of GVHD (of donor origin) occurred only in the periphery of the C3H mice tolerized with AKR spleen cells plus CP and was attributable to the destruction of Ag-stimulated T cells by the CP treatment. In contrast, the intrathymic clonal deletion of immature V beta 6+ T cells was a common mechanism for both of the tolerance induction systems.  相似文献   

11.
In vitro studies have suggested that tolerance induction (i.e., anergy) is associated with an inability of T cells to proliferate vigorously upon Ag recognition. In vivo, the relationship between T cell proliferation and tolerance induction is less clear. To clarify this issue, we have been studying a model system in which naive CD4+ T cells specific for the model Ag hemagluttinin (HA) are adoptively transferred into different transgenic founder lines of mice expressing HA as a peripheral self-Ag. When transferred into two lines whose HA expression differs by at least 1000-fold, HA-specific T cells undergo multiple rounds of cell division before reaching a nonresponsive (i.e., tolerant) state. While the proliferative response is more rapid in mice expressing higher levels of HA, the T cells become tolerant regardless of the level of peripheral HA expression. When the T cells encounter HA expressed as a viral Ag, they proliferate at a similar rate and undergo the same number of divisions as with self-HA, but they do not become tolerant. These results indicate that a tolerizing stimulus can induce similar T cell mitotic rates as a priming stimulus. Therefore, CD4+ T cell tolerance induction in vivo is not the result of an insufficient proliferative response elicited upon TCR engagement.  相似文献   

12.
By generating two types of transgenic mice we have investigated how extrathymic events can contribute to self tolerance. The major histocompatibility complex class I gene Kb was expressed under the control of the glial fibrillary acidic protein promoter in cells of neuroectodermal origin outside the thymus. These mice were tolerant to Kb. When crossed to transgenic mice expressing a Kb-specific T cell receptor (TCR), clonotype+, CD8+CD4- mature T cells could be detected in normal numbers in the thymus of the double-transgenic mice but were strongly reduced in spleen and lymph nodes in comparison with TCR single-transgenic mice. After isolation of clonotype negative splenic T cells and activation in vitro, reappearance of the clonotype+, CD8+CD4- cells was observed. These results indicate that down-regulation of TCR and CD8 molecules on the antigen-specific T cells is a novel mechanism, by which peripheral tolerance to this antigen can occur.  相似文献   

13.
14.
Immunoregulatory CD25(+)CD4 T cells are thought to arise from the thymus as a distinct lineage of CD4 T cells specific for self Ags. We used the DO11.10 TCR transgenic adoptive transfer system to show that cells of similar phenotype may also arise in the course of peripheral tolerance induction. Such cells emerged within 1 wk following Ag exposure and correlated negatively with the number of initial cell divisions. Limiting i.v. Ag dose or using an oral tolerance protocol yielded the greatest numbers of Ag-specific CD25(+)CD4 T cells. In contrast, immunogenic Ag exposure in the presence of an adjuvant did not lead to emergence of CD25(+)CD4 T cells. The profound anergic phenotype of these cells and their potential immunoregulatory properties make them an especially desirable population to induce in the course of immunotherapy in numerous clinical settings. This experimental system may be useful in future studies designed to optimize immunologic tolerance induction.  相似文献   

15.
1alpha,25-dihydroxyvitamin D3, the active form of vitamin D3, and mycophenolate mofetil, a selective inhibitor of T and B cell proliferation, modulate APC function and induce dendritic cells (DCs) with a tolerogenic phenotype. Here we show that a short treatment with these agents induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. Peritransplant macrophages and DCs from tolerant mice express down-regulated CD40, CD80, and CD86 costimulatory molecules. In addition, DCs from the graft area of tolerant mice secrete, upon stimulation with CD4+ cells, 10-fold lower levels of IL-12 compared with DCs from acutely rejecting mice, and induce a CD4+ T cell response characterized by selective abrogation of IFN-gamma production. CD4+ but not CD8+ or class II+ cells from tolerant mice, transferred into naive syngeneic recipients, prevent rejection of donor-type islet grafts. Graft acceptance is associated with impaired development of IFN-gamma-producing type 1 CD4+ and CD8+ cells and an increased percentage of CD4+CD25+ regulatory cells expressing CD152 in the spleen and in the transplant-draining lymph node. Transfer of CD4+CD25+ cells from tolerant but not naive mice protects 100% of the syngeneic recipients from islet allograft rejection. These results demonstrate that a short treatment with immunosuppressive agents, such as 1alpha,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.  相似文献   

16.
Insulin-dependent diabetes is an autoimmune disease targeting pancreatic beta-islet cells. Recent data suggest that autoreactive CD8+ T cells are involved in both the early events leading to insulitis and the late destructive phase resulting in diabetes. Although therapeutic injection of protein and synthetic peptides corresponding to CD4+ T cell epitopes has been shown to prevent or block autoimmune disease in several models, down-regulation of an ongoing CD8+ T cell-mediated autoimmune response using this approach has not yet been reported. Using CL4-TCR single transgenic mice, in which most CD8+ T cells express a TCR specific for the influenza virus hemagglutinin HA512-520 peptide:Kd complex, we first show that i.v. injection of soluble HA512-520 peptide induces transient activation followed by apoptosis of Tc1-like CD8+ T cells. We next tested a similar tolerance induction strategy in (CL4-TCR x Ins-HA)F1 double transgenic mice that also express HA in the beta-islet cells and, as a result, spontaneously develop a juvenile onset and lethal diabetes. Soluble HA512-520 peptide treatment, at a time when pathogenic CD8+ T cells have already infiltrated the pancreas, very significantly prolongs survival of the double transgenic pups. In addition, we found that Ag administration eliminates CD8+ T cell infiltrates from the pancreas without histological evidence of bystander damage. Our data indicate that agonist peptide can down-regulate an autoimmune reaction mediated by CD8+ T cells in vivo and block disease progression. Thus, in addition to autoreactive CD4+ T cells, CD8+ T cells may constitute targets for Ag-specific therapy in autoimmune diseases.  相似文献   

17.
Cohen JL  Salomon BL 《Cytotherapy》2005,7(2):166-170
The subpopulation of CD4+ CD25+ immunoregulatory T cells constitutes less than of the entire CD4+ T-cell pool in mice and 2% in humans. These cells play a crucial role in the control of autoimmune processes. More recently, in vitro and in vivo data also indicate that CD4+ CD25+ immunoregulatory T cells can regulate alloreactivity. This renders them good candidates for innovative strategies in the field of transplantation. Inducing a state of immune tolerance with immunoregulatory T cells would alleviate the need for immunosuppression, and the occurrence of late allograft failure represents a major goal of transplantation immunology. Here we discuss how these naturally occurring CD4+ CD25+ immunoregulatory T cells can be used to modulate alloreactivity in hematopoietic stem cell and solid organ transplantation.  相似文献   

18.
CD4(+)CD25(+) T cells have been proposed as the principal regulators of both self-tolerance and transplantation tolerance. Although CD4(+)CD25(+) T cells do have a suppressive role in transplantation tolerance, so do CD4(+)CD25(-) T cells, although 10-fold less potent. Abs to CTLA-4, CD25, IL-10, and IL-4 were unable to abrogate suppression mediated by tolerant spleen cells so excluding any of these molecules as critical agents of suppression. CD4(+)CD25(+) T cells from naive mice can also prevent rejection despite the lack of any previous experience of donor alloantigens. However, this requires many more naive than tolerized cells to provide the same degree of suppression. This suggests that a capacity to regulate transplant rejection pre-exists in naive mice, and may be amplified in "tolerized" mice. Serial analysis of gene expression confirmed that cells sorted into CD4(+)CD25(+) and CD4(+)CD25(-) populations were distinct in that they responded to TCR ligation with very different programs of gene expression. Further characterization of the differentially expressed genes may lead to the development of diagnostic tests to monitor the tolerant state.  相似文献   

19.
Our previous studies revealed that both the autoeffector and immunoregulatory T cells in cyclosporin A (CSA)-induced autologous graft-vs-host disease are recent thymic emigrants (RTEs). The autoeffector cells appear in and are released from the thymus during the first week of CSA treatment, whereas the immunoregulatory thymocytes appear during the second week but are not released until several days after cessation of CSA treatment. In the present study, the antigenic phenotypes of these functional T cell subsets were determined by immunomagnetic separation and flow immunocytometric analysis. During CSA wk 1, the autoeffector T cells in both the thymus and lymph node (LN) expressed a CD4+8+ double-positive (DP) phenotype, after which those in the LN became CD8 single positive (SP). Timed thymectomy experiments confirmed that the CD8-SP autoeffector T cells in LN originated from these DP RTEs. During CSA wk 2, the immunoregulatory thymocytes also displayed a DP phenotype. However, they were not exported to the periphery until several days after CSA treatment had been interrupted and they had acquired a CD4-SP phenotype. In LN, these immunoregulatory RTEs expressed the CD25+ marker characteristic of anergic/suppressor T cells. Cell separation and mixing experiments demonstrated that the autoeffector T cells persist in LN after cessation of CSA treatment, but their activity is not detectable in the presence of recently exported CD4+ T cells. Hence, the results indicate that tolerance to CSA-induced autologous graft-vs-host disease is actively mediated by CD25+CD4+ RTEs that suppress the function of CD8 autoeffector T cells.  相似文献   

20.
T cell development in mice lacking the CD3-zeta/eta gene.   总被引:25,自引:3,他引:22       下载免费PDF全文
The CD3-zeta and CD3-eta polypeptides are two of the components of the T cell antigen receptor (TCR) which contribute to its efficient cell surface expression and account for part of its transducing capability. CD3-zeta and CD3-eta result from the alternative splicing of a single gene designated CD3-zeta/eta. To evaluate the role of these subunits during T cell development, we have produced mice with a disrupted CD3-zeta/eta gene. The analysis of thymocyte populations from the CD3-zeta/eta-/- homozygous mutant mice revealed that they have a profound reduction in the surface levels of TCR complexes and that the products of the CD3-zeta/eta gene appear to be needed for the efficient generation and/or survival of CD4+CD8+ thymocytes. Despite the almost total absence of mature single positive thymocytes, the lymph nodes from zeta/eta-/- mice were found to contain unusual CD4+CD8- and CD4-CD8+ single positive cells which were CD3-. In contrast to the situation observed in the thymus, the thymus-independent gut intraepithelial lymphocytes present in zeta/eta-/- mice do express TCR complexes on their surface and these are associated with Fc epsilon RI gamma homodimers. These results establish an essential role for the CD3-zeta/eta gene products during intrathymic T cell differentiation and further emphasize the difference between conventional T cells and thymus-independent gut intraepithelial lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号