首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review examines the 1992-2000 literature on studies of the molecular conformations of melatonin ligands at the melatonin receptor. In order to investigate quantitative structure-affinity relationships between different chemical classes of melatonergic ligands binding to the melatonin GPCR, CoMFA has been applied to extended sets of compounds, to obtain 3D-QSAR agonist/antagonist models. The results of several authors have suggested that the active conformation of the C-3 aminoethyl side chain of melatonin and related compounds is in a folded form, orthogonal to the aromatic ring. Positive steric potentials were found in the C-2 region, surrounding the C-5 methoxy group and near the N -acyl group of the side chain, while substituents in positions C-6 and C-7 cause a decrease in affinity. Negative steric regions were found between indole N-1 and C-2. Receptor binding affinities have been predicted for a range of structurally diverse compounds for the sheep brain melatonin receptor considering steric, electrostatic and lipophilic fields.  相似文献   

2.
Melatonin (MLT) is a well-known free-radical scavenger, involving in the prevention of cellular damage that can lead to cancer, ageing and a variety of neurodegenerative diseases. Research on MLT-related compounds has been required to optimise the maximum pharmaceutical activity with the lowest side effects. In our ongoing research, we have synthesized new indole-based MLT analogues as potential antioxidant agents by modifying the MLT molecule. In this study, we build on previous findings, through the synthesis, characterization and in vitro antioxidant profiling of a series of new indole-based MLT analogues which possess triazole, thiadiazole and carbothioamides on the third position on the indole ring. In vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox sensitive fluorescent probe and their radical scavenging activity was assessed via the DPPH assay. In addition, in vitro cytotoxic effects of newly synthesized compounds were investigated in CHO-K1 cells using the MTT assay.  相似文献   

3.
A new series of melatonin (MLT) dimers were obtained by linking together two melatonin units with a linear alkyl chain through the MLT acetamido group or through a C-2 carboxyalkyl function. The binding properties of these ligands were evaluated in in vivo experiments on cloned human MT(1) and MT(2) receptors expressed in NIH3T3 rat fibroblast cells. The class of 2-carboxyalkyl dimers was the most interesting one with compounds having good MT(1)/MT(2) nanomolar affinity. The data obtained suggest that the spacer length is crucial for optimal interaction at both receptor subtypes as well as to determine functional activity of the resulting dimers.  相似文献   

4.
Tetrahydrobenz[cd]indole, has been usually assumed to be a rigid scaffold of arylethylamines of pharmaceutical interest, such as melatonin and serotonin. A series of molecules containing this scaffold has been synthesized and their conformation in solution has been determined by 1H NMR. The values of the coupling constants show that the carbocycle fused with the indole ring is a mixture of the two conformers with substituent in equatorial or axial orientation. The molar fraction of the conformers appears to be sensibly affected by the bulkiness of the C-2 indole substituent. A pseudo-axial orientation of the C-3 alkylamido side chain is important for melatonin ligands to access the binding site and exhibit potent in vitro affinity, as illustrated for melatonin ligand 1 (pK(i)=9.32).  相似文献   

5.
Schiff bases prepared by the reactions of substituted amines with indole-/, pyrimidine-/, pyridine-/, and quinoline-aldehydes are made to undergo indium mediated allylation whereby a (substituted amine, allyl)methyl group has been introduced at C-3 of indole, C-5 of pyrimidine, and C-2 of pyridine and quinoline. Amongst the 16 compounds investigated for anti-cancer activities at 59 human tumor cell lines 3, 9-12, and 14 show appreciable activities. The structure-activity relationship studies point that the contribution of phenylglycinol moiety as a part of side chain at C-3 of indole and C-5 of pyrimidine seems to be crucial for exhibiting anti-cancer activities.  相似文献   

6.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the main side chain modification pathway is initiated by hydroxylation at C-24 of the side chain and leads to the formation of the end product, calcitroic acid. The C-23 and C-26 oxidation pathways, the minor side chain modification pathways are initiated by hydroxylations at C-23 and C-26 of the side chain and lead to the formation of the end product, calcitriol lactone. The C-3 epimerization pathway, the newly discovered A-ring modification pathway is initiated by epimerization of the hydroxyl group at C-3 of the A-ring to form 1alpha,25(OH)(2)-3-epi-D(3). A rational design for the synthesis of potent analogs of 1alpha,25(OH)(2)D(3) is developed based on the knowledge of the various metabolic pathways of 1alpha,25(OH)(2)D(3). Structural modifications around the C-20 position, such as C-20 epimerization or introduction of the 16-double bond affect the configuration of the side chain. This results in the arrest of the C-24 hydroxylation initiated cascade of side chain modifications at the C-24 oxo stage, thus producing the stable C-24 oxo metabolites which are as active as their parent analogs. To prevent C-23 and C-24 hydroxylations, cis or trans double bonds, or a triple bond are incorporated in between C-23 and C-24. To prevent C-26 hydroxylation, the hydrogens on these carbons are replaced with fluorines. Furthermore, testing the metabolic fate of the various analogs with modifications of the A-ring, it was found that the rate of C-3 epimerization of 5,6-trans or 19-nor analogs is decreased to a significant extent. Assembly of all these protective structural modifications in single molecules has then produced the most active vitamin D(3) analogs 1alpha,25(OH)(2)-16,23-E-diene-26,27-hexafluoro-19-nor-D(3) (Ro 25-9022), 1alpha,25(OH)(2)-16,23-Z-diene-26,27-hexafluoro-19-nor-D(3) (Ro 26-2198), and 1alpha,25(OH)(2)-16-ene-23-yne-26,27-hexafluoro-19-nor-D(3) (Ro 25-6760), as indicated by their antiproliferative activities.  相似文献   

7.
Melatonin (MLT) is a hormone produced in the brain by the pineal gland, from the amino acid tryptophan. It is also an antioxidant hormone with a particular role in the protection of nuclear and mitochondrial DNA. In recent years, many physiological properties of MLT have been described resulting in much attention in the development of synthetic compounds possessing the indole ring. Sixteen MLT analogue indole hydrazide/hydrazone derivatives were synthesized and in vitro antioxidant activity was investigated. Most of the compounds showed significantly higher activity than MLT at 10(-3) M and 10(-4) M concentrations.  相似文献   

8.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   

9.
Melatonin (MLT) is a hormone produced in the brain by the pineal gland, from the amino acid tryptophan. It is also an antioxidant hormone with a particular role in the protection of nuclear and mitochondrial DNA. In recent years, many physiological properties of MLT have been described resulting in much attention in the development of synthetic compounds possessing the indole ring. Sixteen MLT analogue indole hydrazide/hydrazone derivatives were synthesized and in vitro antioxidant activity was investigated. Most of the compounds showed significantly higher activity than MLT at 10? 3 M and 10? 4 M concentrations.  相似文献   

10.
This paper reviews our progress made in characterizing structure-affinity relationships of indole-based melatonin analogs. Evidence is presented suggesting a preferred folded conformation for the amido side chain, almost orthogonal to the plane of indole. A 3D-QSAR comparative molecular field analysis (CoMFA) model, accounting for the observed differences in binding affinity within different classes of melatonergic ligands, and capable of quantitatively predicting the binding affinity of new compounds, is also reported.  相似文献   

11.
Overproduction of reactive oxygen species results in oxidative stress that can cause fatal damage to vital cell structures. It is known that the use of antioxidants could be beneficial in the prevention or delay of numerous diseases associated with oxidative stress. Melatonin (MLT) is known as a powerful free-radical scavenger and antioxidant. It was found that indole ring of MLT can be employed by bioisosteric replacement by other aromatic rings. Quinoline derivatives constitute an important class of compounds for new drug development. Owing to quinoline and hydrazones appealing physiological properties and are mostly found in numerous biologically active compounds a series of quinoline-2-carbaldehyde hydrazone derivatives were synthesized as bioisosteric analogues of MLT, characterized and in vitro antioxidant activity was investigated by evaluating their reducing effect against oxidation of a redox-sensitive fluorescent probe. Cytotoxicity potential of all compounds was investigated both by lactate dehydrogenase leakage assay and by MTT assay.  相似文献   

12.
Despite an increasing number of publications concerning the antioxidant activity of melatonin, little is known about the structural features responsible for this kind of activity. To understand the role played by the different elements of melatonin structure in its antioxidant activity, we have designed and tested several compounds related to this molecule in the low-density lipoprotein peroxidation model. We present here the results of this study in terms of structure-activity relationships focusing on the influence of the acetamidoethyl side chain, the methoxy group, and the indole heterocycle. In this model, we found that changing the acyl residue generally resulted in more active products. We obtained particularly good results with the nonanoyl derivative which showed a level of activity comparable to that of phenols despite lacking a phenolic function. The presence of a methoxy group in position 5 generally had a beneficial influence on the activity, but when located in position 6, the effects were various. The substitution of a hydroxy for the methoxy group led to phenolic compounds endowed with very high antioxidant activity. Replacing the amide with a ketone function did not affect the activity while replacement with an amine group in some cases resulted in prooxidant compounds. Finally, we compared the efficacy of different aromatic rings. The indole heterocycle proved to be better than benzofurane and naphthalene rings.  相似文献   

13.
Huang L  Ho P  Chen CH 《FEBS letters》2007,581(25):4955-4959
This study discovered that betulinic acid (BA) is a potent proteasome activator that preferentially activates the chymotrypsin-like activity of the proteasome. Chemical modifications can transform BA into proteasome inhibitors. Chemical modifications at the C-3 position of BA resulted in compounds, such as dimethylsuccinyl BA (DSB), with various inhibitory activities against the human 20S proteasome. Interestingly, the proteasomal activation by BA and the inhibitory activity of DSB could be abrogated by introducing a side chain at the C-28 position. In summary, this study discovered a class of small molecules that can either activate or inhibit human proteasome activity depending on side chain modifications.  相似文献   

14.
The secosteroid hormone 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] is metabolized in its target tissues through modifications of both the side chain and the A-ring. The C-24 oxidation pathway, the previously well established main side chain modification pathway, is initiated by hydroxylation at C-24 of the side chain. The C-3 epimerization pathway, the newly discovered A-ring modification pathway, is initiated by epimerization of the hydroxyl group at C-3 of the A-ring. The end products of the metabolism of 1alpha,25(OH)2D3 through the C-24 oxidation and the C-3 epimerization pathways are calcitroic acid and 1alpha,25-dihydroxy-3-epi-vitamin-D3 respectively. During the past two decades, numerous noncalcemic analogs of 1alpha,25(OH)2D3 were synthesized. Several of the analogs have altered side chain structures and as a result some of these analogs have been shown to resist their metabolism through side chain modifications. For example, two of the analogs, namely, 1alpha,25-dihydroxy-16-ene-23-yne-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-D3] and 1alpha,25-dihydroxy-16-ene-23-yne-20-epi-vitamin D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-D3], have been shown to resist their metabolism through the C-24 oxidation pathway. However, the possibility of the metabolism of these two analogs through the C-3 epimerization pathway has not been studied. Therefore, in our present study, we investigated the metabolism of these two analogs in rat osteosarcoma cells (UMR 106) which are known to express the C-3 epimerization pathway. The results of our study indicate that both analogs [1alpha,25(OH)2-16-ene-23-yne-D3 and 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3] are metabolized through the C-3 epimerization pathway in UMR 106 cells. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-D3 [1alpha,25(OH)2-16-ene-23-yne-3-epi-D3] was confirmed by GC/MS analysis and its comigration with synthetic 1alpha,25(OH)2-16-ene-23-yne-3-epi-D3 on both straight and reverse-phase HPLC systems. The identity of the C-3 epimer of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 [1alpha,25(OH)2-16-ene-23-yne-20-epi-3-epi-D3] was confirmed by GC/MS and 1H NMR analysis. Thus, we indicate that vitamin D analogs which resist their metabolism through the C-24 oxidation pathway, have the potential to be metabolized through the C-3 epimerization pathway. In our present study, we also noted that the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-20-epi-D3 is about 10 times greater than the rate of C-3 epimerization of 1alpha,25(OH)2-16-ene-23-yne-D3. Thus, we indicate for the first time that certain structural modifications of the side chain such as 20-epi modification can alter significantly the rate of C-3 epimerization of vitamin D compounds.  相似文献   

15.
Novel tricyclic indole-3-carboxamides were synthesized as structurally restricted analogs of bicyclic indoles, and found to be potent CB1 cannabinoid receptor agonists. The CB1 agonist activity depended on the absolute configuration of the chiral center of the tricyclic ring. The preferred enantiomer was more potent than the structurally unconstrained lead compound. Structure–activity relationships in the amide side chain of the indole C-3 position were also investigated.  相似文献   

16.
He L  Jagtap PG  Kingston DG  Shen HJ  Orr GA  Horwitz SB 《Biochemistry》2000,39(14):3972-3978
Extensive structure-activity studies done with Taxol have identified the side chain at C-13 as one of the requirements for biological activity. Baccatin III, an analogue of Taxol lacking the C-13 side chain, has none of the biological characteristics of Taxol. Since 2-m-azido Taxol, a Taxol derivative with a m-azido substituent in the C-2 benzoyl ring, has greater activity than Taxol, we questioned whether 2-m-azido baccatin III might be active. 2-m-Azido baccatin III inhibited the proliferation of human cancer cells at nanomolar concentrations, blocked cells at mitosis, and reorganized the interphase microtubules into distinct bundles, a typical morphological change induced by Taxol. In contrast to 2-m-azido baccatin III, 2-p-azido baccatin III was similar to baccatin III, having no Taxol-like activity, further indicating the specificity and significance of the 2-meta position substituent. Molecular modeling studies done with the C-2 benzoyl ring of Taxol indicated that it fits into a pocket formed by His227 and Asp224 on beta-tubulin and that the 2-m-azido, in contrast to the 2-p-azido substituent, is capable of enhancing the interaction between the benzoyl group and the side chain of Asp224. The observation that the C-13 side chain is not an absolute requirement for biological activity in a taxane molecule has enabled the development of a new common pharmacophore model between Taxol and the epothilones.  相似文献   

17.
The structure and dynamics of synthetic melittin (MLT) and MLT analogues bound to monomyristoylphosphatidylcholine micelles, dimyristoylphosphatidylcholine vesicles, and diacylphosphatidylcholine films have been investigated by fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR spectroscopy. All of these methods provide information about peptide secondary structure and/or about the environment of the single tryptophan side chain in these lipid environments. ATR-FTIR data provide additional information about the orientation of helical peptide segments with respect to the bilayer plane. Steady-state fluorescence anisotropy, fluorescence lifetime, and 13C NMR relaxation data are used in concert to provide quantitative information about the dynamics of a single 13C-labeled tryptophan side chain at position 19 in lipid-bound MLT, and at positions 17, 11, and 9, respectively, in lipid-bound MLT analogues. Peptide chain dynamics are probed by NMR relaxation studies of 13C alpha-labeled glycine incorporated into each of the MLT peptides at position 12. The cumulative structural and dynamic data are consistent with a model wherein the N-terminal alpha-helical segment of these peptides is oriented perpendicular to the bilayer plane. Correlation times for the lysolipid-peptide complexes provide evidence for binding of a single peptide monomer per micelle. A model for the membranolytic action of MLT and MLT-like peptides is proposed.  相似文献   

18.
Fusidic acid (FA) is a potent congener of the fusidane triterpenoid class of antibiotics. Structure-activity relationship (SAR) studies suggest the chemical structure of FA is optimal for its antibacterial activity. SAR studies from our group within the context of a drug repositioning approach in tuberculosis (TB) suggest that, as with its antibacterial activity, the C-21 carboxylic acid group is indispensable for its anti-mycobacterial activity. Further studies have led to the identification of 16-deacetoxy-16β-ethoxyfusidic acid (58), an analog which exhibited comparable activity to FA with an in vitro MIC99 value of 0.8 µM. Preliminary SAR studies around the FA scaffold suggested that the hydrophobic side chain at C-20, like the C-11 OH group, was required for activity. The C-3 OH group, however, can be functionalized to obtain more potent compounds.  相似文献   

19.
In order to define the effect of a side chain hydroxy group on bile acid (BA) physicochemical and biological properties, 23-hydroxylated bile acids were synthesized following a new efficient route involving the alpha-oxygenation of silylalkenes. 22-Hydroxylated bile acids were also studied. The synthesized bile acids included R and S epimers of 3 alpha,7 alpha,23-trihydroxy-5 beta-cholan-24-oic acid (23R epimer: phocaecholic acid), 3 alpha,12 alpha,23-trihydroxy-5 beta-cholan-24-oic (23R epimer: bitocholic acid), and 3 alpha,7 beta,23-trihydroxy-5 beta-cholan-24-oic acid. A 3 alpha,7 alpha,22-trihydroxy-5 beta-cholan-24-oic acid (haemulcholic acid) was also studied. The presence of a hydroxy group on the side chain slightly modified the physicochemical behavior in aqueous solution with respect to common BA: the critical micellar concentration (CMC) and the hydrophilicity were similar to naturally occurring trihydroxy BA such as cholic acid. The pKa value was lowered by 1.5 units with respect to common BA, being 3.8 for all the C-23 hydroxy BA. C-22 had a higher pKa (4.2) as a result of the increased distance of the hydroxy group from the carboxy group. When the C-23 hydroxylated BA were intravenously administered to bile fistula rats, they were efficiently recovered in bile (more than 80% unmodified) while the corresponding analogs, lacking the 23- hydroxy group, were almost completely glycine- or taurine-conjugated. On the other hand, the C-22 hydroxylated BA were extensively conjugated with taurine and less than 40% of the administered dose was secreted without being conjugated. In the presence of intestinal bacteria, they were mostly metabolized to the corresponding 7-dehydroxylated compound similar to common BA with the exception of bitocholic acid which was relatively stable. The presence of a hydroxy group at the C-23 position increased the acidity of the BA and this accounted for poor absorption within the biliary tree and efficient biliary secretion without the need for conjugation. 3 alpha,7 beta-23 R/S trihydroxy-5 beta-cholan-24-oic acids could improve the efficiency of ursodeoxycholic acid (UDCA) for gallstone dissolution or cholestatic syndrome therapy, as it is relatively hydrophilic and efficiently secreted into bile without altering the glycine and taurine hepatic pool.  相似文献   

20.
Three new steroid glycosides, linckosides C-E, were isolated from the Okinawan starfish Linckia laevigata. Their structures and partial stereochemistry were elucidated by spectroscopic methods and chemical derivatization. These metabolites are additional members of the linckosides that were previously discovered as a novel class of neuritogenic compounds. Each of them possesses two monosaccharide units at C-3 of a polyhydroxylated steroidal aglycon and at the side chain (C-28 or C-29). Linckosides C and D are the first steroids that possess a hydroxyisopropyl substituent at C-24 of the side chain. These compounds are not only potent inducers of neurite outgrowth on PC12 cells but also significant enhancers of nerve growth factor (NGF) to induce the neurite outgrowth. The structure-activity relationships within the linckosides revealed that the presence of xylopyranose at the side chain was important rather than arabinofuranose, but that the diversity of the side chain carbon skeleton was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号