首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benzoylformate decarboxylase is a member of the family of enzymes that are dependent on the cofactor thiamin diphosphate. A structure of this enzyme binding (R)-mandelate, a competitive inhibitor, suggests that at least two hydrogen bonds are formed between the substrate, benzoylformate, and active site side chains. The first is between the carboxylate group of benzoylformate and the hydroxyl group of S26, and the second is between carbonyl group of the substrate and an imidazole nitrogen of H70. Steady-state kinetic studies indicate that the catalytic parameters are strongly affected in three active site mutants, S26A, H70A, and H281A. The K(m) of S26A was increased most dramatically, 25-fold more than that of the wild-type enzyme, while the K(i) of (R)-mandelate was increased 100-fold, suggesting that the serine hydroxyl is important for substrate binding. The k(cat) of H70A is reduced more than 3 orders of magnitude, strongly implicating this residue in catalysis, and H281 showed significant, but smaller magnitude, effects on both K(m) and k(cat). Stopped-flow experiments using an alternative substrate, p-nitrobenzoylformate, lead to kinetic resolution of the fate of key thiamin diphosphate-bound intermediates. Together, the experimental results suggest the following roles for residues in the active site. The residue H70 is important for the protonation of the 2-alpha-mandelyl-ThDP intermediate, thereby assisting in decarboxylation, and for the deprotonation of the 2-alpha-hydroxybenzyl-ThDP intermediate, aiding product release. H281 is involved in protonation of the enamine. Surprisingly, S26 appears to be involved not only in substrate binding but also in other steps of the reaction.  相似文献   

2.
The crystal structure of the complex of the thiamine diphosphate dependent tetrameric enzyme pyruvate decarboxylase (PDC) from brewer's yeast strain with the activator pyruvamide has been determined to 2.4 A resolution. The asymmetric unit of the crystal contains two subunits, and the tetrameric molecule is generated by crystallographic symmetry. Structure analysis revealed conformational nonequivalence of the active sites. One of the two active sites in the asymmetric unit was found in an open conformation, with two active site loop regions (residues 104-113 and 290-304) disordered. In the other subunit, these loop regions are well-ordered and shield the active site from the bulk solution. In the closed enzyme subunit, one molecule of pyruvamide is bound in the active site channel, and is located in the vicinity of the thiazolium ring of the cofactor. A second pyruvamide binding site was found at the interface between the Pyr and the R domains of the subunit in the closed conformation, about 10 A away from residue C221. This second pyruvamide molecule might function in stabilizing the unique orientation of the R domain in this subunit which in turn is important for dimer-dimer interactions in the activated tetramer. No difference electron density in the close vicinity of the side chain of residue C221 was found, indicating that this residue does not form a covalent adduct with an activator molecule. Kinetic experiments showed that substrate activation was not affected by oxidation of cysteine residues and therefore does not seem to be dependent on intact thiol groups in the enzyme. The results suggest that a disorder-order transition of two active-site loop regions is a key event in the activation process triggered by the activator pyruvamide and that covalent modification of C221 is not required for this transition to occur. Based on these findings, a possible mechanism for the activation of PDC by its substrate, pyruvate, is proposed.  相似文献   

3.
4.
E A Sergienko  F Jordan 《Biochemistry》2001,40(25):7382-7403
The widely quoted kinetic model for the mechanism of yeast pyruvate decarboxylase (YPDC, EC 4.1.1.1), an enzyme subject to substrate activation, is based on data for the wild-type enzyme under optimal experimental conditions. The major feature of the model is the obligatory binding of substrate in the regulatory site prior to substrate binding at the catalytic site. The activated monomer would complete the cycle by irreversible decarboxylation of the substrate and product (acetaldehyde) release. Our recent kinetic studies of YPDC variants substituted at positions D28 and E477 at the active center necessitate some modification of the mechanism. It was found that enzyme without substrate activation apparently is still catalytically competent. Further, substrate-dependent inhibition of D28-substituted variants leads to an enzyme form with nonzero activity at full saturation, requiring a second major branch point in the mechanism. Kinetic data for the E477Q variant suggest that three consecutive substrate binding steps may be needed to release product acetaldehyde, unlikely if YPDC monomer is the minimal catalytic unit with only two binding sites for substrate. A model to account for all kinetic observations involves a functional dimer operating through alternation of active sites. In the context of this mechanism, roles are suggested for the active center acid-base groups D28, E477, H114, and H115. The results underline once more the enormous importance that both aromatic rings of the thiamin diphosphate, rather than only the thiazolium ring, have in catalysis, a fact little appreciated prior to the availability of the 3-dimensional structure of these enzymes.  相似文献   

5.
Chedad A  Van Dael H  Vanhooren A  Hanssens I 《Biochemistry》2005,44(46):15129-15138
Equilibrium circular dichroism and kinetic stopped-flow fluorescence studies on the stability and the folding kinetics of a set of Trp to Phe mutants of goat alpha-lactalbumin (GLA) were used to characterize the native, intermediate, and transition states of these constructs. GLA contains four tryptophan residues, three of which, Trp26, Trp104, and Trp118, are located in the alpha-domain, while the fourth, Trp60, is located in the beta-domain. Trp26, Trp60, and Trp104 are part of a hydrophobic cluster, whereas Trp118 is situated in a more flexible region near the C-terminal end of the protein. In each case, the mutation leads to a reduction in the overall stability, but only for W26F and W60F is an equilibrium intermediate observed in guanidine hydrochloride-induced unfolding experiments. In kinetic refolding experiments, however, for all samples a burst phase is observed, the amplitude of which depends on the specific mutation. Refolding and unfolding kinetics can adequately be described by a sequential three-state mechanism. phi value analysis showed that the local structure around Trp26, Trp60, and Trp104 is formed in the intermediate and in the transition state of the folding reaction, while around Trp118 no persistent native contacts are observed. From these findings, we conclude that, although hydrophobicity is a major driving force for folding, minor steric changes induced by point mutation can considerably influence the overall stability and the folding process of the protein.  相似文献   

6.
(R)- and (S)-Hippuryl-alpha-methylphenylalanine [(R)- and (S)-Hipp-alpha-MePhe] and (S)-hippuryl-alpha-methylphenyllactic acid [(S)-Hipp-alpha-MeOPhe] were synthesized and evaluated as substrates for carboxypeptidase A (CPA) in an effort to shed further light on the catalytic mechanism of the enzyme. The rate of CPA-catalyzed hydrolysis of (S)-Hipp-alpha-MePhe was reduced by 105-fold compared with that of (S)-Hipp-Phe, but the hydrolysis rate of (S)-Hipp-OPhe was lowered by only 6.8-fold by the introduction of a methyl group at the alpha-position. (R)-Hipp-alpha-MePhe failed to be hydrolyzed initially, then started to undergo hydrolysis in about 2 h at a much reduced rate. The results of present study may be envisioned on the basis of the proposition that while peptide substrate is hydrolyzed via a tetrahedral transition state formed by the attack of the zinc-bound water molecule at the peptide carbonyl carbon, ester hydrolysis takes the path that involves an anhydride intermediate generated by the attack of the carboxylate of Glu-270 at the ester carbonyl carbon.  相似文献   

7.
8.
The roles of four of the active center groups with potential acid-base properties in the region of pH optimum of pyruvate decarboxylase from Saccharomyces cerevisiae have been studied with the substitutions Asp28Ala, His114Phe, His115Phe, and Glu477Gln, introduced by site-directed mutagenesis methods. The steady-state kinetic constants were determined in the pH range of activity for the enzyme. The substitutions result in large changes in k(cat) and k(cat)/S(0.5) (and related terms), indicating that all four groups have a role in transition state stabilization. Furthermore, these results also imply that all four are involved in some manner in stabilizing the rate-limiting transition state(s) both at low substrate (steps starting with substrate binding and culminating in decarboxylation) and at high substrate concentration (steps beginning with decarboxylation and culminating in product release). With the exception of some modest effects, the shapes of neither the bell-shaped k(cat)/S(0.5)-pH (and related functions) plots nor the k(cat)-pH plots are changed by the substitutions. Yet, the fractional activity still remaining after substitutions virtually rules out any of the four residues as being directly responsible for initiating the catalytic process by ionizing the C2H. There is no effect on the C2 H/D exchange rate exhibited by the D28A and E477Q substitutions. These results strongly imply that the base-induced deprotonation at C2 is carried out by the only remaining base, the iminopyrimidine tautomer of the coenzyme, via intramolecular proton abstraction. The first product is released as CO(2) rather than HCO(3)(-) by both wild-type and E477Q and D28A variants, ruling out several mechanistic alternatives.  相似文献   

9.
Noninvasive nuclear magnetic resonance was used to measure the relaxation decay curves of naturally occurring 23Na ions in several biological systems. Experimental results showed an increase of membrane bound population for pathologic samples as compared with control. The bound sodium population was put in evidence using singular value decomposition method. Thus, the singular values that are obtained without any a priori from the fitting the relaxation decay curves are a new parameter in characterizing the cellular state. In the presence of artificial biological membranes, 23Na bound strongly to membranes containing phosphatidylcholine (PC) and phosphatidylserine (PS), but not to membranes consisting of only PC. A large bound population also appeared in the presence of apoptotic epithelial cells, which are known to translocate PS to the cell surface. A role for PS was confirmed by showing that sodium binds to the surface of epithelial cells infected with Chlamydia psittaci, and the amplitude of the bound population increases with a time-course similar to the appearance of PS on the surface of dying cells. Finally, this approach could distinguish between normal perfused liver and liver undergoing ischemia, due most likely to the exposure of surface PS on apoptotic and necrotic cells in the damaged tissue. Taken together, these studies demonstrate that the analysis of 23Na relaxation decay curves could reveal the presence of cells undergoing apoptosis and/or necrosis in living tissues. Noninvasive 23Na NMR measurements could thus be envisioned for controlling the quality of organs before transplantation, for the detection of asymptomatic infections that result in death of the host cell or inflammation of the tissue, and for characterizing the efficiency of novel apoptosis-inducing drugs to treat cancer.  相似文献   

10.
The regulation of the hexose monophosphate shunt of human erythrocytes under conditions of oxidative stress has been investigated by monitoring the reduction of oxidised glutathione (GSSG) to reduced glutathione (GSH) in erythrocytes containing high levels of GSSG; 1H NMR and a biochemical assay were used to measure the changes. A reconstituted metabolic system prepared with the purified erythrocyte enzymes was used in conjunction with studies of intact cells and haemolysates to determine the dependence of the rate of GSH production on the activities of hexokinase and glucose-6-phosphate dehydrogenase. Both of these enzymes have previously been claimed to be the rate-limiting step of oxidatively stimulated flux through the hexose monophosphate shunt. The absence of a kinetic isotope effect on the rate of GSH production in these systems, when [1-2H]glucose replaced glucose as the source of reducing equivalents, showed that glucose-6-phosphate dehydrogenase activity was not a strong determinant of the flux. The dependence of the rate of GSH production on the concentration of the hexokinase inhibitors glucose 1,6-bisphosphate and glycerate 2,3-bisphosphate showed that, under conditions of oxidative stress, hexokinase was the principal determinant of flux through the shunt. Glucose 1,6-bisphosphate at the concentration present in vivo appears to be more important in limiting hexokinase activity, and thus the rate of glucose utilisation, than was previously assumed. A detailed computer model of the system was developed based on the reported kinetic parameters of the enzymes involved. A sensitivity analysis of this model predicted that the hexokinase reaction would have a sensitivity coefficient of 0.995 with respect to the maximal rate of GSH production.  相似文献   

11.
The influence of corticosteroids on the lipid polymorphism of dielaidoylglycerophosphoethanolamine was studied by 31P NMR spectroscopy and differential scanning calorimetry. Both techniques evidenced two transitions in the pure lipid samples. The first one corresponded to the gel----liquid crystalline phase transition. It occurred at a temperature of 38.9 degrees C, as measured by differential scanning calorimetry and at 35-40 degrees C as detected by 31P NMR. The second transition corresponded to the bilayer----hexagonal HII phase transition. It occurred at 64.2 degrees C as measured by differential scanning calorimetry and at 60 degrees C as detected by NMR. Addition of corticosteroids led to different specific effects on the bilayer----hexagonal HII phase transition, according to their chemical structure. These effects appear to be the result of low amounts of incorporated steroids, according to binding studies (partition coefficient values range between 5 and 54). The presence of a conjugated 3-keto group in the steroid molecule (progesterone) promoted a downward shift in the bilayer----hexagonal HII phase transition temperature by about 6 -7 degrees C as compared to the 3 beta-OH-bearing compound (pregnenolone), which did not exhibit any appreciable effect. No change in the delta H of transition could be measured. The presence of the 21-OH group (like in deoxycorticosterone) induced the formation of a structure, characterized by an isotropic lineshape of the 31P NMR spectrum at temperatures where the 'hexagonal' type of lineshape is present, without steroid. The transition from the bilayer to this other structure occurred at a slightly higher temperature than the bilayer----hexagonal HII phase transition. It corresponded to a peak in differential scanning calorimetry scans with a delta H of 2.1 kJ X mol-1. The presence of the 17 beta-OH group as present in 17 beta-OH-progesterone and 11-deoxycortisol suppressed the two former effects. These compounds had no influence on the bilayer----hexagonal HII phase HII phase transition. The additional presence of the 11 beta-OH group like in corticosterone and cortisol, evoked a stabilization of the bilayer organization as the bilayer----hexagonal HII phase transition temperature is shifted upward by about 10 degrees C. This was accompanied by a decrease of the delta H to 0.8 kJ X mol-1. Besides this, the corticosteroids did not affect to a large extent the gel----liquid crystalline phase transition: a general slight downward shift of the transition temperature and a small broadening of the transition were observed without significant change in the delta H.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Calmodulin-dependent 3',5'-cyclic nucleotide phosphodiesterase (EC 3.1.4.17) Mr 63,000 and Mr 60,000 from the brain as well as Mr approximately 59,000 species from the heart, have been compared with respect to their steady-state kinetic parameters for the hydrolysis of cAMP, cGMP and their 2'-O-anthraniloyl- and 2'-O-(N-methylanthraniloyl)-derivatives. Kinetic studies with the native substrates indicate high Mr brain enzyme to be cGMP specific whereas low Mr brain and heart enzymes to be nonspecific. In addition, the isozymes studied here appear to be kinetically distinct from those previously isolated form bovine brain tissues. Substitution at 2'-O-position of the cyclic nucleotides gave rise to Vmax values ranging 1-11% of those observed with the native substrates, with minimal effect on Km. The isozymes with exception of heart isoform gave higher Km and Vmax with the anthraniloyl derivatives. This effect is thought to be related to the formation of an intramolecular hydrogen bond which leads to decreased electrostatic interactions between the active-site side chains and the pseudo-substrates.  相似文献   

13.
1. In the hypodermis and gill of the Crustacea fructose 1,6-diphosphatase (EC 3.1.3.11) functions at a primary branch point between glycogen and chitin synthesis. In these tissues of the Arctic king-crab, Paralithodes camtchatica, fructose diphosphatase occurs in two electrophoretically distinguishable forms. 2. Fructose diphosphatase I (pI7.2-7.5) accounts for 70 and 10% of total fructose diphosphatase activity in the hypodermis and gill respectively, whereas fructose diphosphatase II (pI5.3) accounts for 30 and 90% of the total activity in the two tissues. Both forms display a neutral pH optimum, have an absolute requirement for a bivalent cation, and are potently inhibited by high concentrations of AMP and substrate. 3. Fructose 1,6-diphosphate saturation follows Michaelis-Menten kinetics for both fructose diphosphatases; the K(m) (fructose diphosphate) for fructose diphosphatase I is somewhat higher than for fructose diphosphatase II. In the presence of 50-200mm-K(+), the K(m) (fructose diphosphate) increases and at high concentrations of K(+) fructose diphosphate saturation follows sigmoidal kinetics. 4. UDP-N-acetylglucosamine and UDP-glucose at high concentrations specifically and potently inhibit fructose diphosphatase II, but do not significantly affect fructose diphosphatase I activity. 5. Low concentrations of UDP-N-acetylglucosamine activate fructose diphosphatase II by a decrease in the apparent K(m) (fructose diphosphate), but fructose diphosphatase I is again refractory to UDP-N-acetylglucosamine under these conditions. 6. In the presence of K(+) and UDP-N-acetylglucosamine, fructose diphosphatase II is able to compete for limiting fructose diphosphate about three times more effectively than is fructose diphosphatase I. 7. AMP inhibition of both forms of the enzyme is subject to three independent variables: (a) alkaline pH increases the K(i) (AMP), (b) K(+) decreases the K(i), increases the sigmoidicity of inhibition kinetics, increases the maximum inhibition attained, and abolishes the effect of pH on AMP inhibition, and (c) Mg(2+) strongly de-inhibits AMP-inhibited fructose diphosphatase. 8. It is postulated that the presence of two forms of fructose diphosphatase aids controlled channelling of carbon through the fructose diphosphatase ;bottleneck' either towards glycogen synthesis or chitin synthesis, but not towards both simultaneously.  相似文献   

14.
Previous studies have shown that exogenous lactate impairs mechanical function of reperfused ischaemic hearts, while pyruvate improves post-ischaemic recovery. The aim of this study was to investigate whether the diverging influence of exogenous lactate and pyruvate on functional recovery can be explained by an effect of the exogenous substrates on endogenous protecting mechanisms against oxygen-derived free radicals. Isolated working rat hearts were perfused by a Krebs-Henseleit bicarbonate buffer containing glucose (5 mM) as basal substrate and either lactate (5 mM) or pyruvate (5 mM) as cosubstrate. In hearts perfused with glucose as sole substrate the activity of glutathione reductase was decreased by 32% during 30 min of ischaemia (p<0.10 versus control value), while the activity of superoxide dismutase and catalase was reduced by 27 and 35%, respectively, during 5 min of reperfusion (p<0.10 versus control value). The GSH level in the glucose group was reduced by 29% following 30 min of ischaemia and 35 min of reperfusion (p<0.10). In lactate- and pyruvateperfused hearts there were no significant decreases of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activity during 30 min of ischaemia, 5 min of reperfusion or 35 min of reperfusion. In pyruvate-perfused hearts the glutathione peroxidase activity was even increased by 43% during 30 min of ischaemia (p<0.05). Glutathione levels (reduced and oxidized) did not markedly change in the lactate and pyruvate groups. Thus, the endogenous defense mechanism against oxygen-derived free radicals is compromised at the onset of reperfusion when glucose as sole substrate is present, while addition of lactate or pyruvate prevents reduction of the endogenous capacity to scavenge oxygen-derived free radicals. The equivocal relationship between endogenous scavenging enzyme activity and haemodynamic recovery indicates that involvement of the endogenous antioxidants, if any, in functional recovery of the post-ischaemic heart is complex. Pyruvate may exert protective effects on mechanical function after mild ischaemia by functioning as exogenous scavenger in itself, as pyruvate is able to react with hydrogen peroxide.  相似文献   

15.
The inhibitory effects of tetrahydrolipstatin (THL) on the hydrolytic activity of human pancreatic lipase (HPL) and T. lanuginosa lipase (TLL) on various lipidic substrates ‘poisoned’ with THL as previously described was studied, using either the pH-stat, monomolecular film or oil drop technique.Prior to adding lipase (method C), an ethanolic solution of THL was injected in a tributyrin (TC4) or a purified soybean oil (PSO) emulsion prepared in a pH-stat vessel. Under these conditions, THL was found to be a potent HPL inhibitor. After being dissolved in the pure triglyceride phase (method D), THL also strongly inhibited HPL. However, with TC4 as substrate TLL was efficiently inhibited by THL only when method C was used and not method D. The very different inhibitory effects on HPL and TLL recorded with method D and PSO as substrate were confirmed using the monomolecular film and oil drop techniques.With a monomolecular film of dicaprin (di-C10) as substrate, 1 molecule of THL embedded in 400 000 molecules of di-C10 sufficed to reduce the HPL activity to half of its initial value.HPL was therefore efficiently inhibited by THL with all the methods and substrates tested here. Paradoxically, TLL was inhibited by THL molecules transiently present in the aqueous phase and not by the THL molecules present at the triglyceride/water interface. It should therefore be stressed that the inhibitory effects of THL on each lipase depend strongly on the method and the substrate used.  相似文献   

16.
17.
18.
Sergienko EA  Jordan F 《Biochemistry》2002,41(19):6164-6169
The tetrameric enzyme yeast pyruvate decarboxylase (YPDC) has been known to dissociate into dimers at elevated pH values. However, the interface along which the dissociation occurs, as well as the fundamental kinetic properties of the resulting dimers, remains unknown. The active sites of YPDC are comprised of amino acid residues from two subunits, a property which we utilize to address the issue as to which dimer interface is cleaved under different conditions of dissociation. Hydroxide-induced dissociation of the active site D28A (or D28N) and E477Q variants, each at least 100 times less reactive than wild-type YPDC, followed by reassociation of D28A (or D28N) and E477Q variants led to a remarkable 35-50-fold increase in activity. This result is possible only if the hydroxide-induced dissociation results in a cleavage along the interface between two subunits so that residues D28 and E477 are now separated. Upon reassociation, one of the two active sites of the hybrid dimer will have both residues substituted, whereas the second one will be of the wild-type phenotype. In contrast to the hydroxide-induced dimers, the urea-induced dissociation recently proposed results in dissociation along dimer-dimer interfaces, without separating the active sites, and therefore, on reassociation, these dimers do not regain activity. The significance of the results is discussed in light of a recently proposed alternating sites mechanism for YPDC. A preparative ion-exchange method is reported for the separation and purification of hybrid enzymes.  相似文献   

19.
20.
We recently described that there is a feedback amplification of cytochrome c release from mitochondria by caspases. Here we investigated how caspases impact on mitochondria to induce cytochrome c release and found that recombinant caspase-3 induced opening of permeability transition pore and reduction of membrane potential in vitro. These events were inhibited by Bcl-xL, cyclosporin A and z-VAD.fmk. Moreover, caspase-3 stimulated the rate of mitochondrial state 4 respiration, superoxide production and NAD(P)H oxidation in a Bcl-xL- and cyclosporin A-inhibitable manner. These results suggest that caspase-3 induces cytochrome c release by inducing permeability transition pore opening which is associated with changes in mitochondrial respiration and redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号