首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Measuring the success of wetland restoration efforts requires an assessment of the wetland plant community as it changes following restoration. But analyses of restored wetlands often include plant community data from only one time period. We studied the development of plant communities at 13 restored marshes in northern New York for 4 years, including 1 year prior to restoration and 3 years afterwards. Restored wetlands ranged in size from 0.23 to 1.70 ha. Four reference wetlands of similar basin morphology, soil type, and size (0.29–0.48 ha) that occurred naturally in the same area were studied as comparisons. Dike construction to restore hydrology disturbed the existing vegetation in some parts of the restored sites, and vegetation was monitored in both disturbed and undisturbed areas. Undisturbed areas within the restored sites, which were dominated by upland field grasses before restoration, developed wetland plant communities with lower wetland index values but comparable numbers of wetland plant species than the reference wetlands, and they lagged behind the reference sites in terms of total wetland plant cover. There were significantly more plant species valuable as food sources for wetland birds, and a significantly higher percent cover of these species, at the undisturbed areas of the restored sites than at the reference wetlands. Areas of the restored sites that were disturbed by dike construction, however, often developed dense, monospecific cattail stands. In general, the plant communities at restored sites became increasingly similar to those at the reference wetlands over time, but higher numbers of herbaceous plants developed at the restored sites, including food plants for waterfowl, rails, and songbirds. Differences in shrub cover will probably lessen as natural recolonization increases shrub cover at the restored sites. Natural recolonization appears to be an effective technique for restoring wetlands on abandoned agricultural fields with established plant cover, but it is less successful in areas where soil has been exposed by construction activity.  相似文献   

2.
Few wetland restoration projects include long‐term hydrologic and floristic data collection, limiting our understanding of community assembly over restored hydrologic gradients. Although reference sites are commonly used to evaluate outcomes, it remains unclear whether restoring similar water levels to reference sites also leads to similar plant communities. We evaluated long‐term datasets from reference and restored wetlands 15 years after restoration to test whether similar water levels in reference and restored sites led to vegetation similarity. We compared the hydrologic regimes for three different wetland types, tested whether restored wetland water levels were different from reference water levels, and whether hydrologic similarity between reference and restored wetlands led to similarity in plant species composition. We found restored wetlands had similar water levels to references 15 years after restoration, and that species richness was higher in reference than restored wetlands. Vegetation composition was similar across all wetland types and was weakly correlated to wetland water levels overall. Contrary to our hypothesis, water table depth similarity between restored and reference wetlands did not lead to similar plant species composition. Our results highlight the importance of the initial planting following restoration and the importance of hydrologic monitoring. When the restoration goal is to create a specific wetland type, plant community composition may not be a suitable indicator of restoration progress in all wetland types.  相似文献   

3.
A comparison of created and natural wetlands in Pennsylvania,USA   总被引:7,自引:0,他引:7  
Recent research suggests that created wetlands do not look, or function, like the natural systems they are intended to replace. Proper planning, construction, and the introduction of appropriate biotic material should initiate natural processes which continue indefinitely in a successful wetland creation project, with minimal human input. To determine if differences existed between created and natural wetlands, we compared soil matrix chroma, organic matter content, rock fragment content, bulk density, particle size distribution, vegetation species richness, total plant cover, and average wetland indicator status in created (n = 12) and natural (n = 14)wetlands in Pennsylvania (USA). Created wetlands ranged in age from two to 18 years. Soils in created wetlands had less organic matter content, greater bulk densities, higher matrix chroma, and more rock fragments than reference wetlands. Soils in reference wetlands had clay loam textures with high silt content, while sandy clay loam textures predominated in the created sites. Vegetation species richness and total cover were both greater in natural reference wetlands. Vegetation in created wetlands included a greater proportion of upland species than found in the reference wetlands. There were significant differences in soils and vegetation characteristics between younger and older created wetlands, though we could not say older created sites were trending towards the reference wetland condition. Updated site selection practices, more careful consideration of monitoring period lengths, and, especially, a stronger effort to recreate wetland types native to the region should result in increased similarity between created and natural wetlands.  相似文献   

4.
Aquatic plants usually establish following wetland creation from a variety of mechanisms including animal transport, inflows from nearby wetlands, wind dispersal, and seed banks if they are available. However, at created wetlands that are isolated from natural wetlands, aquatic plant communities may not establish even after 10 or more years. One method of improving the establishment of aquatic plants is through the use of salvaged-marsh soils. Using this method, wetland soil from a donor site is collected and spread across the basin of the created wetland. When the proper hydrologic regime is reached at the created site, the seed bank from the donor soil is then present to take advantage of the uncolonized site. Over 1500 wetlands have been created in northeast Wyoming, USA from bentonite mining and most of them have not developed submersed and emergent plant communities due to isolation from plant sources. Our goal was to evaluate the effectiveness of using salvaged-wetland soil as a tool for improving plant growth at created wetlands. Our study took place at 12 newly created wetlands that were isolated from other wetlands by >5 km. Six wetlands were treated as reference wetlands, with no introductions of seeds or propagules. At the other six wetlands we spread ≈10–15 cm of salvaged soil from a donor wetland during the winter of 1999–2000. To identify the potential plants in donor soil, we collected 10 random samples from the donor wetlands and placed them within wetland microcosms in a greenhouse where they were treated to either moist-soil conditions (water at or just below the soil line) or submersed conditions (water levels maintained at 15–30 cm). Treatment wetlands were evaluated for plant growth during the fall of 2000 and 2001, whereas the greenhouse samples were grown for two growing seasons then harvested. Our results show that using salvaged wetland soil increases: (1) the number of plant species present at a wetland over time, (2) the total vegetation coverage in a treated wetland over time, and (3) the total plant biomass in a treated wetland. The species pool available in the salvaged wetland soil was limited to 10 obligate wetland species, but several of them are considered valuable to waterfowl and other wildlife. Furthermore, salvaged-wetland soil could be useful for ameliorating poor substrate conditions (i.e., bentonite) and improving conditions for the establishment of additional species. One concern with this technique is the introduction of invasive or exotic species that could form monocultures of undesirable plants (e.g., cattail [Typha spp.]); introducing more desirable species during the application of salvaged soil could reduce this probability. We believe incorporating salvaged-wetland soil during basin construction could be used to increase the value and productivity of created wetlands in this region.  相似文献   

5.
6.
Changes in hydrology, water quality and vegetation were evaluated in four palustrine emergent wetland pairs, each including created and reference sites. Located along interstate highways, they were initially sampled in 1988 (Confer and Niering, 1992) and again in 1996. Overall, created sites showed significant decreases in open water and water depth between 1989 and 1996 compared to more stable conditions in reference sites. Total nitrogen was generally higher in created sites compared to reference sites, as was specific conductivity, with chloride levels exceeding 800 mg/L, apparently related to road salt. Emergent plant cover increased from 30 to 39% at three created sites, and decreased at a fourth, whereas reference sites remained relatively stable. Wetland species richness also increased from 31 to 39 species at created sites and 35 to 42 species at reference wetlands between the surveys. By 1996 there was an increase in invasive species, particularly Phragmites australis (common reed) and Lythrum salicaria (purple loosestrife). Phragmites increased from <1 to 15% at created sites, while Lythrum increased at one reference site from <1 to 16%. Typha latifolia (common cattail), dominant in the created wetlands in 1988, decreased from 16 to 5% while Typha angustifolia (narrow-leaved cattail) increased from 2 to 10%. At two created sites experiencing increased sedimentation, Phragmites is now dominant or co-dominant with Typha spp., whereas Carex stricta (tussock sedge) and T. latifolia continue to dominate at reference sites. At the one created, permanent flow-through-hydrology wetland, a three-fold decrease in T. latifolia and an eight-fold increase in Phragmites cover have occurred, the latter correlated with sedimentation from road culverts. Increases in alien or invasive species such as Phragmites and Lythrum can serve as indicators of wetland disturbance. Although these created wetlands provide the services of sediment retention, flood storage, and wildlife habitat, a greater range of wetland functions should be possible by constructing two-tiered systems that remove excess sediments and nutrients upstream of the wetland designed to compensate for wetland loss.  相似文献   

7.
Mangrove wetland restoration and creation efforts are increasingly proposed as mechanisms to compensate for mangrove wetland losses. However, ecosystem development and functional equivalence in restored and created mangrove wetlands are poorly understood. We compared a 20-year chronosequence of created tidal wetland sites in Tampa Bay, Florida (USA) to natural reference mangrove wetlands. Across the chronosequence, our sites represent the succession from salt marsh to mangrove forest communities. Our results identify important soil and plant structural differences between the created and natural reference wetland sites; however, they also depict a positive developmental trajectory for the created wetland sites that reflects tightly coupled plant-soil development. Because upland soils and/or dredge spoils were used to create the new mangrove habitats, the soils at younger created sites and at lower depths (10–30?cm) had higher bulk densities, higher sand content, lower soil organic matter (SOM), lower total carbon (TC), and lower total nitrogen (TN) than did natural reference wetland soils. However, in the upper soil layer (0–10?cm), SOM, TC, and TN increased with created wetland site age simultaneously with mangrove forest growth. The rate of created wetland soil C accumulation was comparable to literature values for natural mangrove wetlands. Notably, the time to equivalence for the upper soil layer of created mangrove wetlands appears to be faster than for many other wetland ecosystem types. Collectively, our findings characterize the rate and trajectory of above- and below-ground changes associated with ecosystem development in created mangrove wetlands; this is valuable information for environmental managers planning to sustain existing mangrove wetlands or mitigate for mangrove wetland losses.  相似文献   

8.
Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative plant traits on moisture, nutrient regime and seed dispersal in three case studies of re wetted vs. control wetlands with the same actual groundwater levels. Soil conditions included mineral (calcareous and non‐calcareous) soils with no initial vegetation, mineral soils with established vegetation and organic soils with vegetation. Results: The responsiveness of traits to raised groundwater tables was related to soil type and vegetation presence and depended on actual groundwater levels. In the moist‐wet zone, oligotrophic species, ‘drier’ species with higher seed longevity occupied gaps created by vegetation dieback on rewetting. The other rewetted zones still reflected trait values of the vegetation prevalent prior to rewetting with fewer adaptations to wet conditions, increased nutrient richness and higher seed longevity. Moreover, ‘eutrophic’ and ‘drier’ species increased at rewetted sites, so that these restored sites became dissimilar to control wetlands. Conclusions: The prevalent traits of the restored wetlands do not coincide with traits belonging to generally targeted plant species of wetland restoration. Long‐term observations in restored and control wetlands with different groundwater regimes are needed to determine whether target plant species eventually re vegetate restored wetlands.  相似文献   

9.
Many studies have attempted to assess the ability of created wetlands to replace the ecological structure and functions of natural wetlands over short time periods (<5 years). Few studies have repeatedly monitored vegetative community development of created depressional wetlands over longer time frames or assessed the return on the level of initial restoration efforts. Here, the vegetation communities of 17 created freshwater marshes in two different geographic regions of the U.S., Ohio and Colorado, ranging from 5 to 19 years old, were monitored over multiple years and compared to natural reference sites. Findings suggest that created marshes in Ohio achieved floristic equivalency with natural reference sites for measures of plant species richness, number of native plant species, number of hydrophytes, and percent plant cover within a decade. Yet, created marshes in Ohio contained double the amount of non-native plant species observed in natural reference sites. In Colorado, created marshes were less successful, failing to achieve floristic equivalency for plant species richness, number of native plant species, and number and percent hydrophytes given more than a decade of restoration. Soil chemistry data suggest that although created marshes achieve certain hydric soil characteristics, they were significantly lower in organic matter, cation exchange capacity, and extractable phosphorus than natural wetlands. Equivalency for soil chemistry will require longer time periods (>14 years). Data suggest that created marshes that seem to be approaching floristic equivalency in early years following construction may level off or even dramatically decline over longer time periods (10–20 years) for certain floristic indicators. Restoration trajectories for Ohio created marshes with strong initial restoration efforts predict floristic equivalency in a median of 14 years compared to 24 years for sites with weak initial efforts. Created marshes with strong initial restoration efforts displayed significantly greater plant species richness, number of native plant species, and number of hydrophytes than sites with low initial efforts, indicating the importance of planting, soil transport and/or contouring in establishing a wetland's restoration trajectory.  相似文献   

10.
Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. Hydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). Created sites, which were located along major highways, exhibited more open water, greater water depth, and greater fluctuation in water depth than natural wetlands. Typical wetland soils exhibiting mottling and organic accumulation were wanting in created sites as compared with natural sites. Typha latifolia (common cattail) was the characteristic emergent vegetation at created sites, whereas a more diverse mosaic of emergent wetland species was often associated with Typha at the natural sites. Species richness was slightly higher in created (22–45) vs. natural (20–39) wetlands, but the mean difference (33 vs. 30) was not significant. Nearly half (44%) of the 54 wetland taxa found at the various study sites were more frequently recorded at created than natural wetlands. The presence of mycorrhizae in roots of Typha angustifolia (narrow-leaved cattail) and Phragmites australis (common reed) was greater at created than natural wetlands, which may be related to differential nutrient availability. Wildlife use at all sites ranged from occasional to rare, with more sightings of different species in the natural (39) than created (29) wetlands. The presence of P. australis and introduced Lythrum salicaria (purple loosestrife) may pose a threat to future species richness at the created sites. One created site has permanent flow-through hydrology, and its vegetation and wildlife somewhat mimic a natural wetland; however, the presence of P. australis and its potential spread pose an uncertain future for this site. This study suggests the possibility of creating small palustrine/emergent wetlands having certain functions associated with natural wetlands, such as flood water storage, sediment accretion and wildlife habitat. It is premature to evaluate fully the outcome of these wetland creation efforts. A decade or more is needed, emphasizing the importance of long term monitoring and the need to establish demonstration areas.  相似文献   

11.
12.
We applied the floristic quality index (FQI) to vegetation data collected across a chronosequence of created wetland (CW) sites in Virginia ranging in age from one to 15 years post-construction. At each site, we also applied FQI to a nearby forested reference wetland (REF). We tested the performance of the index against a selection of community metrics (species richness, diversity, evenness, percent native species) and site attributes (age, soil physiochemical variables). FQI performed better when non-native species (C-value = 0) were removed from the index, and also when calculated within rather than across vegetation layers. A modified, abundance-weighted FQI showed significant correlation with community and environmental variables in the CW herbaceous layer and REF herbaceous and shrub-sapling layers based on Canonical correspondence analysis (CCA) ordination output. These results suggest that a “natives only”, layer-based version of the index is most appropriate for our region, and an abundance-weighted FQI may be useful for assessing floristic quality in certain layers. The abundance-weighted format has the advantage of preserving the “heritage” aspect of the species conservatism concept while also entraining the “ecology” aspect of site assessment based on relative abundances of the inhabiting species. FQI did not successfully relate CW sites to REF sites, bringing into question the applicability of the FQI concept in comparing created wetlands to reference wetlands, and by analogy, the use of forested reference wetlands in general to assess vegetation development in created sites.  相似文献   

13.
1. We examined whether the anthropogenic degradation of wetlands leads to homogenization of the biota at local and/or landscape scales and, if so, what specific factors account for such an effect. We compared 16 isolated wetlands (Michigan, U.S.A.) that varied in surrounding land use: half had developed, and half undeveloped, riparian zones. Samples of macrophytes, epiphytic diatoms, zooplankton, macroinvertebrates and water chemistry were collected along three transects in each wetland. 2. Developed wetlands were more nutrient‐rich with higher Cl concentrations. The plant community at developed sites was dominated by Lemnaceae (duckweed), while undeveloped wetlands were dominated by rooted, floating‐leaved vegetation and sensitive plant species. Undeveloped wetlands contained heterogeneous and species‐rich plant communities, greater species richness of zooplankton and diatoms, and heterogeneous zooplankton distributions as compared to developed sites. 3. A comparison among wetlands showed that diatom and zooplankton assemblages in developed wetlands were nested subsets of richer biota found in less developed wetlands. Conversely, plant communities were more heterogeneously distributed among developed wetlands at the landscape level. This may be attributable to patchy invasions by exotic species, which were a feature of the degraded wetlands within developed landscapes. 4. Our results indicate that several taxonomic groups showed similar, probably inter‐dependent, responses to wetland degradation and habitat homogenization at both the local and landscape scales. This change in community structure from a species‐rich and heterogeneous community dominated by floating‐leaved plants in undeveloped wetlands, to nutrient‐rich wetlands dominated by duckweed may represent a shift to an alternate stable state.  相似文献   

14.
A common mesofilter approach to conservation of biological diversity and ecosystem function used in agricultural and urban landscapes is maintenance of wetlands and an undisturbed terrestrial buffer surrounding wetlands. Although it is generally accepted that forest buffers protect wetland-associated biological diversity and ecosystem function, the effectiveness and optimal spatial extent of buffers is still an area of debate. During 2007 and 2008 we surveyed amphibians and environmental conditions associated with 54 depression wetlands on the Delmarva Peninsula of Maryland, USA, to examine the role of forest buffers and wetland characteristics in structuring amphibian communities. Forest cover within a 50-m buffer surrounding wetlands was correlated (r = −0.81) with wetland pH but no other wetland characteristics. Wetland pH, canopy cover, hydroperiod, and adjacent forest cover were important predictors of wetland use by individual amphibian species, with many species more likely to occur at wetlands that dried late in the hydrological year and with open canopies. At least one common species preferred circumneutral pH and several restricted-distribution species preferred lower pH (<5). Contrary to expectations, relationships between species occurrence and adjacent forest cover were negative. Our results suggest that current regulations that provide buffers of 30 m or less do not provide adequate protection of wetland water chemistry but that forest encroachment into wetlands may be a threat to the integrity of amphibian communities and should be the target of monitoring, future research, and management efforts. © 2021 The Wildlife Society.  相似文献   

15.
Though often overlooked, small wetlands in an upland matrix can support diverse plant communities that increase both local and regional species richness. Here we characterize the full range of wetland vegetation within an upland forest landscape and compare the diversity and composition of different wetland plant communities. In an old-growth forest reserve in southern Quebec, Canada, we sampled wet habitats including lakeshores, permanent and seasonal ponds, swamps, glades, and streamsides. We used clustering, indicator species analysis, and nonmetric multidimensional scaling ordination to identify and compare vegetation types. The wetlands contained 280 species of vascular plants, 45% of the reserve's flora, in only 1.1% of its area. Local diversity averaged 24 ± 0.7 species per 7 m(2), much higher than in the surrounding upland forests. Plant communities sorted into five types, whose strongest indicator species were Osmunda regalis, Glyceria striata, O. cinnamomea, Deparia acrostichoides, and Matteuccia struthiopteris, respectively. Both local species richness and compositional variation among sites differed among the vegetation types. By combining species representative of the region's major wetlands with species from the upland forest matrix, the plant assemblages of these wetlands make disproportionately important contributions to landscape-level diversity.  相似文献   

16.
Numerous wetlands have been created spontaneously in the Ebro river basin as a consequence of new irrigation developments over the last 50 years. Water used for irrigating farmland drains into the lower parts of small valleys to form wetlands that are mostly dominated by common reed (Phragmites australis). Bird communities established in these wetlands are still simple, partly due to the lack of management to enable their ecological functions to improve. A knowledge of which environmental features favor these bird communities is essential in order to improve the design of newly created or restored wetlands associated to future irrigation developments. For this purpose, the habitat and vegetation features of 15 wetlands have been sampled. The structure of bird communities (richness, abundance and diversity) was monitored over 3 years during the breeding season and in winter at foraging and nocturnal roosting. The presence of bushes, height of stems and distance from large wetlands (>1 ha) proved to be the most influential variables on bird community structure and on most abundant species during the breeding season. Wetland area and compactness influenced species richness and the most abundant species during winter foraging and roosting. There was a maximum stem height at which only reed-dwelling birds remained. Uncontrolled winter burning had a severe negative effect upon these recently established populations. The ecological functions of newly created or restored wetlands, including those for run-off treatment in agricultural catchments, could be substantially improved taking into account simple guidelines from these results which relate bird community characteristics to wetland features.  相似文献   

17.
The restoration of inland salt‐affected plant communities, including saltflat mixed prairie and playa lakes wetlands, has received little attention despite the importance of these communities for critical wildlife habitat. The salt‐affected communities of Cheyenne Bottoms, located in central Kansas, are a crucial stopover site for migratory waterfowl and shorebirds. In 1998, The Nature Conservancy attempted to restore native plant communities to grazed and former cropland at Cheyenne Bottoms by reestablishing sheet flow across these disturbed areas. We collected vegetation cover data along permanent transects established in rangeland, former cropland, and in a shallow basin 3 years (1996–1998) before the hydrological changes and continued to collect vegetation data for 3 years (1999–2001) after the hydrological changes. Vegetation composition changes in response to the restored hydrology were subtle, but the average wetland index along the transects in the basin and the rangeland significantly declined. Significant decreases occurred in the cover of perennials and graminoids in both spring and fall species assemblages of the rangeland area. Changes in the former cropped areas were mixed, indicating the difficulty of restoring these disturbed plant communities to native plant assemblages within a few years.  相似文献   

18.
The contribution of wetlands to livelihood in the forms of resources of direct consumptive uses, fishing and agriculture are of great importance to riparian communities in sub-Saharan Africa. It is unfortunate to note that these same areas are being degraded and converted to informal settlements through uncontrolled urbanisation. To improve urban environments and meet the various development targets, efforts are being made to rid sub-Saharan African cities of these informal wetland associated slums. The difficulty, however, lies in delineating wetland boundaries. This research is therefore aimed at determining the vegetation diversity of wetlands in Kumasi, Ghana and to identify and characterise the typical urban wetland and factors that influence the small scale heterogeneity in distribution of the wetland vegetation. Ten relatively large wetland sites associated with streams within the Kumasi Metropolis were selected for this study. Sampling in each site was done using 1 m2 quadrats laid at 10 m intervals from the water channel. All plant species in each quadrat were identified. The soil and hydrologic conditions of each site were studied. A total of 112 species were identified in the 10 study sites. The study sites were found to be significantly different from each other in environmental conditions and species distribution. Species in these study sites could, however, be grouped into clusters according to the presence or absence of surface water. A wetland in Kumasi was found to be typified by high percentage organic carbon with Thelypteris palustris as the dominant species.  相似文献   

19.
Habitat loss and degradation are leading causes of biodiversity declines, therefore assessing the capacity of created mitigation wetlands to replace habitat for wildlife has become a management priority. We used single season occupancy models to compare the occurrence of larvae of four species of pond‐breeding amphibians in wetlands created for mitigation, wetlands impacted by road construction, and unimpacted reference wetlands along a highway corridor in the Greater Yellowstone Ecosystem, United States. Created wetlands were shallow and had less aquatic vegetation and surface area than impacted and reference wetlands. Occupancy of barred tiger salamander (Ambystoma mavortium) and boreal chorus frog (Pseudacris maculata) larvae was similar across wetland types, whereas boreal toads (Anaxyrus boreas) occurred more often in created wetlands than reference and impacted wetlands. However, the majority of created wetlands (>80%) dried partially or completely before amphibian metamorphosis occurred in both years of our study, resulting in heavy mortality of larvae and, we suspect, little to no recruitment. Columbia spotted frogs (Rana luteiventris), which require emergent vegetation that is not common in newly created wetlands, occurred commonly in impacted and reference wetlands but were found in only one created wetland. Our results show that shallow created wetlands with little aquatic vegetation may be attractive breeding areas for some amphibians, but may result in high mortality and little recruitment if they fail to hold water for the entire larval period.  相似文献   

20.
北方沼泽湿地在水源供给、缓解水土流失、遏制草地沙化等方面具有重要作用,明确其植物群落物种组成和多样性特征对提升其生态系统服务功能具有重要意义。目前,在北方地区开展大尺度湿地植被调查的研究仍相对较少。土壤水分是驱动植物群落发展的主导环境因素之一,为了解高低土壤水分背景下湿地植物群落特征差异及关键驱动要素,对我国7个北方典型沼泽湿地的植物群落物种组成及多样性特征进行了调查,分析了植物群落物种组成及多样性特征与环境因子的关系,以及沼泽湿地植物群落内克隆植物的分布特征。研究结果发现不同沼泽湿地的植物群落物种组成和多样性差异显著,但无明显的地带性分布规律,物种分布呈现区域性。群落物种多样性受降水、温度、土壤养分等多种环境因素的共同影响。沼泽湿地高低土壤水分背景下植物群落的物种组成和多样性差异显著,低土壤水分下植物群落物种多样性指数显著高于高土壤水分下植物群落。低土壤水分下物种多样性主要受降水和总氮影响,而高土壤水分下物种多样性主要受温度和总磷的影响。高土壤水分下克隆植物物种数和盖度在沼泽湿地植物中占有较高的比例,表明克隆植物比非克隆植物更适应高土壤水分环境。研究结果表明了7个沼泽湿地植被的区域性...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号