首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Proliferation of lianas in canopy gaps can restrict tree regeneration in tropical forests through competition. Liana effects may differ between tree species, depending on tree requirements for above- and below-ground resources. We conducted an experiment in a shade house over 12 months to test the effect of light (7 and 27% external irradiance) on the competitive interactions between seedlings of one liana species and three tree species and the contribution of both above- and below-ground competition. Seedlings of the liana Acacia kamerunensis were grown with tree seedlings differing in shade tolerance: Nauclea diderrichii (Pioneer), Khaya anthotheca (Non-Pioneer Light Demander) and Garcinia afzelii (Non-Pioneer Shade Bearer). Trees were grown in four competition treatments with the liana: no competition, root competition, shoot competition and root and shoot competition. Both root and root–shoot competition significantly reduced relative growth rates in all three tree species. After one year, root–shoot competition reduced growth in biomass to 58% of those (all species) grown in no competition. The root competition treatment had a more important contribution in the effect of the liana on tree growth. Tree seedlings did not respond to competition with the liana by altering their patterns of biomass allocation. Although irradiance had a great effect on tree growth and allocation of biomass, the interaction between competition treatments and irradiance was not significant. Nauclea diderrichii, the tree species which responded most to the effects of competition, showed signs of being pot-bound, the stress of which may have augmented the competition effects. The understanding of the interaction of above- and below-ground competition between lianas and trees and its moderation by the light environment is important for a proper appreciation of the influence of lianas on tropical forest regeneration.  相似文献   

2.
An experimental technique was used to separate and evaluate the magnitude of allelopathic interference relative to resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup (Empetraceae). To test for resource competition and allelopathy, respectively, Scots pine (Pinus sylvestris L.) seedlings were grown in both the greenhouse and in the field over a 3 year period, in four different treatments within E. hermaphroditum vegetation: (1) PVC tubes were used to reduce effects of interspecific below-ground competition; (2) activated carbon was spread on the soil to adsorb toxins leached from E. hermaphroditum litter and green leaves, thus reducing effects of allelopathic interference; (3) E. hermaphroditum vegetation was left untreated to evaluate inhibiting effects when both allelopathy and resource competition were present; (4) PVC tubes, placed in E. hermaphroditum vegetation spread with activated carbon were used to determine growth of seedlings when both allelopathy and resource competition were reduced. Scots pine seedlings grown in untreated vegetation (with both root competition and allelopathy present) had the lowest shoot length and dry weight; seedlings with both allelopathy and root competition reduced (activated carbon in tube) were the largest. Reducing either root competition alone (tube treatment) or allelopathy alone (carbon treatment) produced seedlings of intermediate size, but reduced competition had a greater effect than reduced allelopathy (although, in the greenhouse, significantly so only for root biomass). In the greenhouse experiment, biomass production of seedlings grown free of both interactions (carbon in tube) was greater than the simple sum of the growth response to the individual interactions (tube treatment and carbon treatment, respectively). Larger shoot:root ratios were also found when pine seedlings were grown without tubes (i.e. when resource competition was occurring). In the field, the removal of allelopathy (carbon treatments) increased shoot:root ratio when compared to the removal of resource competition. The study showed that two different interference mechanisms of E. hermaphroditum can be separated and quantified, and that below-ground competition and allelopathy by E. hermaphroditum are both important factors retarding growth of Scots pine.  相似文献   

3.
For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings. Experimental seedlings were established in a typical southern Swedish shrub community where they received 1 of 4 competition levels (above-ground, below-ground, above- and below-ground, or no competition), and leaf-level responses were examined between two growth flushes. Two years after establishment, first-flush leaves from seedlings receiving above-ground competition showed a maximum rate of photosynthesis (Amax) 40% lower than those of control seedlings. With the development of a second flush above the shrub canopy, Amax of these seedlings increased to levels equivalent to those of seedlings free of light competition. Shrubby competition reduced oak seedling transpiration such that seedlings exposed to above- and below-ground competition showed rates 43% lower than seedlings that were not exposed to competition. The impaired physiological function of oak seedlings growing amid competition ultimately led to a 60-74% reduction in leaf area, 29-36% reduction in basal diameter, and a 38-78% reduction in total biomass accumulation, but root to shoot ratio was not affected. Our findings also indicate that above-ground competition reduced Amax, transpiration and biomass accumulation more so than below-ground competition. Nevertheless, oak seedlings exhibited the ability to develop subsequent growth flushes with leaves that had an Amax acclimated to utilize increased light availability. Our findings highlight the importance of flush-level acclimation under conditions of heterogeneous resource availability, and the capacity of oak seedlings to initiate a positive response to moderate competition in a shrub community.  相似文献   

4.
垂直方向磷素竞争对杉木根系生长及生物量分配的影响   总被引:2,自引:0,他引:2  
针对自然环境中有效磷养分主要分布于土壤表层而容易导致植物根系激烈竞争的问题,选择同一杉木(Cunninghamia lanceolata)无性系幼苗为研究对象,采用水平方向空间狭小而垂直方向空间大的室内盆栽模拟装置,以单株种植为对照,构建双株种植的竞争处理,通过设置3个供磷水平:不供磷处理(0 mg/kg KH_2PO_4)、低磷处理(6 mg/kg KH_2PO_4)和正常供磷处理(12 mg/kg KH_2PO_4),采用破坏性试验方式收获,分别在试验的前期(50 d)、中期(100 d)和后期(150 d)测定不同处理条件下杉木幼苗根系生物量与根系形态的变化,研究邻株杉木根系在垂直方向上对有限磷素资源的竞争策略。结果表明:竞争处理和供磷水平对杉木幼苗根系长度、平均直径等形态指标的影响存在交互作用(P0.05),对杉木幼苗生物量分配、比根长等指标的影响均不存在明显的交互作用(P0.05)。竞争处理中杉木根系形态增量均明显高于非竞争处理的单株幼苗,且随着胁迫时间的增加,根系形态增量均呈现显著的上升趋势,其中在胁迫中期和后期的增量明显高于前期,且邻株竞争处理明显提高了杉木的比根长,提升了根系觅磷的能力;随着供磷水平的提高,根表面积和根体积增量大体上呈现先上升后下降的趋势。与非竞争处理相比,竞争条件下杉木地上部生物积累量差异不明显,而根系生物量、根冠比均低于非竞争处理的单株幼苗。  相似文献   

5.
《新西兰生态学杂志》2011,28(2):289-294
We examine the height growth, diameter growth and below-ground allocation responses of mountain beech (Nothofagus solandri var. cliffortioides) seedlings to the experimental removal of root competition through root trenching and the addition of fertiliser within relatively intact-canopied mountain beech forest in the Craigieburn Range, Canterbury. Trenching and trenching combined with fertiliser increased relative height and diameter growth of mountain beech seedlings above that of controls. Trenching and trenching combined with fertiliser also increased the root:shoot biomass ratio of seedlings above that of controls suggesting rapid root proliferation to maximise short-term nutrient uptake. Our results are consistent with an increasing number of studies that show that on infertile soils under intact canopies seedlings of ‘apparent’ light-demanding species can respond to the removal of root competition. Because New Zealand indigenous forests usually occur on infertile soils, we conclude that root competition may be particularly important.  相似文献   

6.
Outplanting container-grown oak seedlings with undesirable shoot and root characteristics result in poor establishment and reduced field growth. The objective of this study was to determine the influence of container type on both above-and below-ground nursery growth and field performance of one-year old tap-rooted seedlings Quercus ilex L. and Quercus coccifera L. The experiment was conducted in an open-air nursery and the seedlings were grown in three container types. At the end of the nursery, growth period seedlings’ shoot height, diameter (5 mm above root collar), shoot and root biomass, root surface area, root volume and total root length were assessed. Then the seedlings were planted in the field and their survival and growth were recorded for two growing seasons after outplanting. The results showed a difference between the Quercus species in the effect of container type. Q. ilex seedlings raised in paper-pot had significantly greater height, diameter, shoot and root biomass and root volume than those raised in the other two container types. Similarly, Q. coccifera seedlings raised in paper-pot, had significantly greater above-and below-ground growth than those raised in the other two container types. Both oak species showed relatively low survival in the field; the mortality was mainly observed the first year after outplanting, especially after the summer dry period. However, 2 years after outplanting, the paper-pot seedlings of the two oak species showed better field performance.  相似文献   

7.
两种光强下木质藤本与树木幼苗的竞争关系   总被引:5,自引:1,他引:5       下载免费PDF全文
 为了探讨木质藤本和树木幼苗的相互作用关系,对两种光强(4%和35%的光强)、4种竞争处理下(全竞争、地上竞争、地下竞争和无竞争),一种 需光木质藤本(刺果藤(Byttneria grandifolia))和3个树种(耐荫种:五桠果木姜子(Litsea dilleniifolia)和绒毛番龙眼(Pometia tomentosa);需光种:羊蹄甲(Bauhinia variegata))幼苗的地上部分和地下部分的竞争关系进行了研究。结果表明:木质藤本的竞争显著影响 着3种树木幼苗的光合能力、形态特征和生长,但生长环境的不同光强影响地上部分竞争和地下部分竞争的相对强度。在低光下,地上部分竞争 比地下部分竞争对3种树木幼苗的相对生长速率(Relative growth rate,RGR)和光合能力造成更大的影响;而高光下,地下竞争对树木幼苗的 生长有更强的抑制作用。不同的竞争处理和光强对树木幼苗的生物量积累造成显著的影响。光强对3种树种的比叶面积(Specific leaf area, SLA)和叶面积比(Leaf area ratio,LAR)有显著的抑制作用,但竞争只对需光的羊蹄甲的SLA和LAR有显著影响。不同的光照和竞争处理之间, 同种植物表现出不同的表型特征。由于竞争的影响,苗木在形态上较为矮小、叶片数目较少、叶面积减小,但是长细比改变较少 。  相似文献   

8.
Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.  相似文献   

9.
Grassland restoration success depends on the development of plant communities that accord with restoration goals. Intraspecific variation in competitiveness may affect community development. For some grassland species, germplasm can be obtained from sources ranging from wild collections to selectively bred cultivars. The extent to which population source affects competitive outcomes in restoration projects is unclear. We addressed this knowledge gap in a glasshouse experiment comparing competitive response and effect among three sources of switchgrass (Panicum virgatum) that are available for restoration: selectively bred cultivars, commercial ecotypes (commercially produced but not deliberately selected), and wild collections. Two strains per source type were grown with four associates chosen to encompass varied functional groups: conspecifics, Bromus inermis, Cirsium arvense, and Solanum ptycanthum. Switchgrass competitive response was evaluated for survival, height, biomass, and shoot:root biomass ratio; competitive effect was assessed as associate survival, height, biomass, and shoot:root ratio. Competitive responses of cultivars and commercial ecotypes were broadly similar, although cultivar biomass exceeded both that of ecotypes and wild collections, and ecotypes had the highest shoot:root ratio. Wild collections were most negatively affected by competition. The shoot:root ratios of all sources were highest when grown with S. ptycanthum, indicating that competitive responses were plastic; plasticity in fitness‐related traits can contribute to persistence in variable environments. Cultivars exerted negative effects on B. inermis. Secondary analyses indicated that all switchgrass sources were most inhibited by the annual S. ptycanthum. To summarize, population source affected multiple aspects of switchgrass competitive ability, when grown against functionally varied associates.  相似文献   

10.
Summary Centaurea maculosa seedlings were grown in pots to study the effects of root herbivory by Agapeta zoegana L. (Lep.: Cochylidae) and Cyphocleonus achates Fahr. (Col.: Curculionidae), grass competition and nitrogen shortage (each present or absent), using a full factorial design. The aims of the study were to analyse the impact of root herbivory on plant growth, resource allocation and physiological processes, and to test if these plant responses to herbivory were influenced by plant competition and nitrogen availability. The two root herbivores differed markedly in their impact on plant growth. While feeding by the moth A. zoegana in the root cortex had no effect on shoot and root mass, feeding by the weevil C. achates in the central vascular tissue greatly reduced shoot mass, but not root mass, leading to a reduced shoot/root ratio. The absence of significant effects of the two herbivores on root biomass, despite considerable consumption, indicates that compensatory root growth occurred. Competition with grass affected plant growth more than herbivory and nutrient status, resulting in reduced shoot and root growth, and number of leaves. Nitrogen shortage did not affect plant growth directly but greatly influenced the compensatory capacity of Centaurea maculosa to root herbivory. Under high nitrogen conditions, shoot biomass of plants infested by the weevil was reduced by 30% compared with uninfested plants. However, under poor nitrogen conditions a 63% reduction was observed compared with corresponding controls. Root herbivory was the most important stress factor affecting plant physiology. Besides a relative increase in biomass allocation to the roots, infested plants also showed a significant increase in nitrogen concentration in the roots and a concomitant reduction in leaf nitrogen concentration, reflecting a redirection of the nitrogen to the stronger sink. The level of fructans was greatly reduced in the roots after herbivore feeding. This is thought to be a consequence of their mobilisation to support compensatory root growth. A preliminary model linking the effects of these root herbivores to the physiological processes of C. maculosa is presented.  相似文献   

11.
采用生物量计算的竞争指数和通径分析的方法,研究了3种密度的梓树苗木地下竞争和地上竞争的关系及对总竞争的影响。结果显示,梓树苗木地下生物量、地上生物量和总生物量与密度密切相关,随着密度的增加,其根、茎、叶的生物量减少,根冠比均小于1。在同一密度条件下,地上竞争指数明显大于地下竞争指数,地上竞争对总竞争的直接作用范围(0.449 3~0.973 1)明显大于地下竞争对总竞争的直接作用(0.275 6~0.773 2)。研究表明,梓树幼苗地上茎、叶的竞争在梓树苗木总的竞争中占有重要地位。  相似文献   

12.
Interactions between root and shoot competition vary among species   总被引:9,自引:0,他引:9  
James F. Cahill  Jr. 《Oikos》2002,99(1):101-112
Understanding how the competition varies with productivity is essential for differentiating among alternative models of plant community organization. Prior attempts to explain shifts in root and shoot competition along gradients have generally assumed an additive interaction between the two competitive forms, using an experimental design which does not fully separate both above‐ and belowground processes. At the most basic level, few field studies have separated root and shoot competition, and we have limited knowledge about both the relative importance of these processes, and how they interact to affect plant growth in the field. Presented here are findings from a field study in which root and shoot competition were experimentally separated by using root exclusion tubes and neighbor tiebacks in an early successional community. Individuals of four species (Abutilon theophrasti, Amaranthus retroflexus, Rumex crispus, and Plantago lanceolata) were grown at two levels of fertilization with full competition, aboveground competition only, belowground competition only, or neither above‐ nor belowground competition. Competition was measured as competitive response, which is the natural log of the relative biomass of a target plant grown with competition compared to growth without competition. In contrast to predictions from current models of productivity‐competition relationships, but in agreement with other experimental studies, there was no change in the strengths or root, shoot, or total competition with a modest increase in productivity. Despite no effect of fertilization on the strength of competition, the form of interaction between root and shoot competition varied both as a function of species identity and fertilization. For both of the rosette forming species, the combined effects of root and shoot competition were less than predicted assuming no interaction (a “negative interaction”), with one species switching from a negative to an additive interaction with fertilization. The fact that fertilization caused a shift in the root‐shoot interaction, but not in the total strength of root and shoot competition, suggests that the root‐shoot interaction is itself a highly labile variable. If root‐shoot interactions are common in natural systems, then simply measuring the strength of one form of competition in no way provides any information about the overall importance of that competitive form to plant growth.  相似文献   

13.
Competition for light can affect exploitation of spatially heterogeneous soil resources. To evaluate the influence of shoot status on root growth responses in nutrient-rich soil patches, we studied the effects of shading and whole-plant nitrogen status on root growth in N-enriched and nonenriched patches by mature Agropyron desertorum plants growing in the field with below-ground competition. Roots in enriched patches had greater length to weight ratios (specific root length, SRL), indicating increased absorptive surface areas, compared with roots in control patches. Increased SRL was due to increased production and length of higher order laterals rather than morphological changes in roots of the same branching order. Although the pattern of root growth rates in patches was the same for shaded and unshaded plants, the magnitude of this response to enriched patches was damped by shading. Root relative growth rates (RGR) in N-enriched patches were reduced by more than 50% by short-term shading treatments (60% reduction in photosynthetic flux density), while root RGR in unenriched patches was unaffected by shading. Unexpectedly, plants with higher nitrogen status had greater root RGR in enriched patches than plants that had not received nitrogen supplement, again with no detectable effect on root RGR in the unenriched patches. Therefore, while both shading and plant N status affected the ability of roots to exploit enriched patches by proliferation, there was no stimulation or suppression of root growth in the unenriched, control patches. Thus, plants already under competitive pressure above ground for light and below ground for nutrients should be less able to rapidly respond to opportunities presented in nutrient patches and pulses.  相似文献   

14.
光强对杉木幼苗形态特征和叶片非结构性碳含量的影响   总被引:3,自引:0,他引:3  
选取南方重要的造林树种杉木(Cunninghamia lanceolata(Lamb.)Hook)幼苗为研究对象,通过搭建遮荫棚设置5个光照强度(分别为自然光照的100%、60%、40%、15%和5%),研究了幼苗在不同光照强度下的生长形态、生物量积累及分配、叶片的非结构性碳含量(NSC)特征。结果显示:(1)叶长、叶宽和叶面积在40%光照强度下最大,而比叶面积和叶片相对含水量随着光照强度的降低呈递增趋势;(2)随着光照强度的降低,杉木幼苗各器官生物量下降,根生物量比和根冠比降低,茎和叶生物量比增加;(3)杉木幼苗在60%光照强度下叶片非结构性碳含量最高,5%光照强度下含量最低;(4)杉木幼苗比叶面积与叶生物量以及与非结构性碳含量之间存在极显著的负相关关系(P0.01),叶生物量与非结构性碳含量之间存在极显著的正相关关系(P0.01)。杉木幼苗能够通过形态学上的可塑性来适应不同的光强环境,提高光竞争能力和生存适合度,但在5%光照强度下,由于较难维持碳收支平衡而不利于其生长和存活。  相似文献   

15.
Tang Y  Jiang DM  Chen Z  Toshio O 《应用生态学报》2011,22(8):1955-1960
榆树疏林草原对科尔沁沙地植被恢复和景观保护有着重要意义.本文采用双因素两水平控制试验,从幼苗生物量、地下/地上生物量、茎高、根茎比、叶片数等方面,研究了草-树地上、地下竞争对科尔沁沙地榆树幼苗生长的影响.结果表明:对于1年生榆树幼苗,单株平均生物量表现为无竞争>地上竞争>全竞争>地下竞争;地下/地上生物量表现为地下竞争>全竞争>无竞争>地上竞争;幼苗高度表现为地上竞争>无竞争>全竞争>地下竞争;根茎比表现为地下竞争>全竞争>无竞争>地上竞争;叶片数表现为地上竞争>无竞争>地下竞争>全竞争.地下竞争对1年生榆树幼苗生长影响显著,而地上竞争对榆树幼苗生长无显著影响.地上竞争与地下竞争对2年生榆树幼苗生长的影响均不显著.科尔沁沙地草本植物对榆树幼苗生长的影响主要通过地下竞争的方式实现,但地下竞争并没有改变榆树幼苗的资源分配方式.随榆树幼苗龄级的增长,草本植物竞争作用的影响逐渐减弱.  相似文献   

16.
Temporal heterogeneity of water supply affects grassland community productivity and it can interact with nutrient level and intraspecific competition. To understand community responses, the responses of individual species to water heterogeneity must be evaluated while considering the interactions of this heterogeneity with nutrient levels and population density. We compared responses of four herbaceous species grown in monocultures to various combinations of water heterogeneity, nutrient level, and population density: two grasses (Cynodon dactylon and Lolium perenne), a forb (Artemisia princeps), and a legume (Trifolium repens). Treatment effects on shoot and root biomass were analyzed. In all four species, shoot biomass was larger under homogeneous than under heterogeneous water supply. Shoot responses of L. perenne tended to be greater at high nutrient levels. Although root biomass was also larger under homogeneous water supply, effects of water heterogeneity on root biomass were not significant in the grasses. Trifolium repens showed marked root responses, particularly at high population density. Although greater shoot and root growth under homogeneous water supply appears to be a general trend among herbaceous species, our results suggested differences among species could be found in the degree of response to water heterogeneity and its interactions with nutrient level and intraspecific competition.  相似文献   

17.
Invasive species continue to alter the plant communities of the eastern United States. To better understand the mechanisms and characteristics associated with invasive success, we studied competition between two Acer species. In a greenhouse, we tested (1) the effect of forest soil type (beneath an invasive and native stand) on seedling growth of the invasive Acer platanoides (Norway maple) and native A. rubrum (red maple), and the (2) effects of full (above- and below-ground) and partial inter-specific competition on species growth. We found A. rubrum growth was negatively affected by soil from the invaded stand, as it had lower above-ground (32%) and below-ground (26%) biomass, and number of leaves (20%) than in the native soil. The root:shoot resource allocations of A. platanoides depended on soil type, as it had 14% greater root:shoot mass allocation in the native soil; this ability to change root:shoot allocation may be contributing to the ecological success of the species. Widely published as having a large ecological amplitude, A. rubrum may be a useful species for ecological restoration where A. platanoides has been present, but the impacts of A. platanoides on soil functioning and subsequent plant interactions must be addressed before protocols for native reintroductions are improved and implemented.  相似文献   

18.
We examined the above- and below-ground responses of seedlings of the woody shrub Prosopis glandulosa to the spatial heterogeneity of soil nutrients within the root zone. We performed a microcosm experiment where seedlings were grown with different combinations of nutrients [nitrogen (N), phosphorus (P), and both combined (NP)] and under different levels of nutrient heterogeneity (nutrients supplied as patches located in the bottom and/or upper portion of rooting zone versus homogeneous distribution). Seedling morphology and biomass did not show a strong response to changes in nutrient ion or spatial heterogeneity. Height, number of leaves, and specific leaf area did not vary significantly between treatments. The number of leaves, foliar biomass, stem biomass and biomass allocation to stems of seedlings showed more responsiveness to the addition of N and NP than to the addition of P. The spatial heterogeneity of nutrients affected the diameter, root biomass and leaf N content. Seedlings had higher diameter and root biomass when the nutrients were homogeneously distributed as compared to their placement as patches in the bottom of the microcosms. Their leaf N concentration increased in those treatments where the nutrient patch was located in the lower half as compared to the upper half of the microcosms. Root foraging responses to nutrient patches varied with their location. Significant root proliferation was observed when patches of N, P and NP were located in the upper portion of the rooting zone; when they were located in the lower portion such a response was observed only for P. Despite our findings that Prosopis seedlings have a low overall responsiveness to small-scale vertical differences in soil nutrient heterogeneity, our results suggest that these differences may modify the growth dynamics of the secondary roots of this ecologically important dryland species during the early stages of its development.  相似文献   

19.
不同水分处理对狗牙根种内相互作用的影响   总被引:1,自引:0,他引:1  
以狗牙根当年生扦插苗为试验材料,根据库区河岸带水分特征设置4种水分处理方式:水分对照组(CK)、水淹与干旱交替组(FD)、土壤水分饱和组(LF)和全淹组(FL),4种密度方式:对照(1株/盆)、低密度(2株/盆)、中密度(4株/盆)及高密度(12株/盆),探究狗牙根生长及形态响应,并验证胁迫梯度假说。结果表明:(1)狗牙根各生物量随水分胁迫强度的增加显著下降(P0.001);密度处理和二者交互作用显著影响狗牙根叶干重、茎干重、根干重、地上生物量和总生物量(P0.001)。(2)水分处理显著影响狗牙根各形态指标(P0.001);密度和二者交互作用显著影响狗牙根分枝数、总茎长和节间长(P0.001)。(3)CK组和LF组狗牙根生物量相对邻体效应(RNE)均为负值,表明其种内关系为竞争关系。FL组各密度组生物量RNE值均为正值,其种内关系转化为促进关系。(4)中高密度组总茎长RNE值随水分胁迫增加而增大。研究表明:(1)狗牙根对不同的水分胁迫均表现出积极响应,可考虑将狗牙根用于库区河岸带植被重建。(2)随种植密度的增大,狗牙根生长及形态均表现出一定的负面效应。(3)本试验在一定程度上支持胁迫梯度假说,但尚需更多概念模型将其改进完善。  相似文献   

20.
We investigated how shoot and root allocation in plants responds to increasing levels of competitive stress at different levels of soil fertility. In addition, we analyzed whether different responses were due to adaptive plasticity or should be attributed to ontogenetic drift. Plantago lanceolata plants were grown during 18 weeks at five plant densities and four nutrient supply levels in pots in the greenhouse. Thereafter root and shoot biomass was measured. There were clear negative effects of increasing plant densities on plant weights revealing strong intraspecific competition. At the lower N-treatments, the proportional allocation to root mass increased with increasing competitive stress, indicating the important role of belowground competition. At the higher N-supply rate, the relationship between competitive stress and shoot to root ratio was neutral. These responses could not be attributed to ontogenetic drift, but could only be explained by assuming adaptive plasticity. It was concluded that at lower N-supplies belowground competition dominates and leads to increased allocation to roots, while at the higher N-supply competition for soil resources and light had balanced impacts on shoot and root allocation. An alternative hypothesis explaining the observed pattern is that light competition has far less pronounced impacts on root–shoot allocation than nutrient deprival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号