首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shi Y  Hu H  Ma R  Cong W  Cai Z 《Biotechnology letters》2004,26(9):747-751
The maximum growth rate (1.4-2 x 10(5) cells ml(-1) d(-1)), cell final yields (2.6-5.2 x 10(5) cells ml(-1)) and extracellular alkaline phosphatase activity (2.4-10.6 microg phosphate released ml(-1) h(-1)) of the red tide alga, Skeletonema costatum, increased when Zn2+ was increased from 0 to 24 pM, but decreased with 66 pM Zn2+ in growth medium with glycerophosphate as the sole phosphorus source. Extracellular carbonic anhydrase activity and the affinity for HCO3- and CO2 uptake increased when Zn2+ was increased from 0 to 12 pM, but then decreased at higher concentrations. The results suggested that utilization of organic phosphate required more Zn2+ than the uptake of inorganic carbon did, while utilization of dissolved inorganic carbon by Skeletonema costatum was very sensitive to Zn2+ concentration variations.  相似文献   

2.
Zn availability in the ocean has been suggested to limit primary production by affecting CO2 acquisition processes for photosynthesis, therefore influencing the global carbon cycle. Also, UV radiation (UVR, 280–400 nm) is known to affect primary production in different ways. It remains to be ascertained whether Zn availability and UVR can act synergistically, antagonistically, or independently on oceanic primary production. We cultured the cosmopolitan diatom Skeletonema costatum (Grev.) Cleve under different radiation treatments with or without UVR (only photosynthetically active radiation), at 0, 3, and 10 pmol · L?1 Zn2+. Specific growth rate, photosynthetic carbon assimilation, external carbonic anhydrase (eCA) activity, and estimated cell abundance increased with increasing concentrations of Zn2+ from 0 to 3 and 10 pmol · L?1, irrespective of the radiation treatment. Higher eCA activity was observed in the cells grown at the high level of Zn2+ in the presence of UVR. An approximately linear relationship between μ and the daily dose of PAR was observed at 3 and 10 pmol · L?1 Zn2+ concentrations. However, the dependency of μ on the daily PAR dose disappeared when the cells were grown in the presence of UVR, which overall depressed both μ and photosynthetic carbon assimilation. The inhibitory effect of UVR was inversely related to Zn2+ concentrations. The ultraviolet‐B (UVB)‐related inhibition of growth and photosynthesis decreased with time, reflecting a faster acclimation of the cells to UVR at replete Zn2+ levels. Overall, growth in the presence of higher Zn2+ concentrations reduced the sensitivity to UV radiation in Skeletonema costatum.  相似文献   

3.
In the marine diatom Skeletonema costatum , carbonic anhydrase activity exterior to the plasma membrane (CAext) was detected only when the available CO2 concentration was less than 5·0 mmol m–3, this activity being unaffected by the total dissolved inorganic carbon concentration. The inhibition of CAext by dextran bound sulphonamide (DBS) demonstrated the key role of this enzyme in maintaining photosynthetic rate under CO2-limited conditions. Treatment with trypsin followed by affinity chromatography on p-aminomethylbenzene-sulphamide agarose and subsequent SDS-PAGE analysis revealed a polypeptide from carbon-replete cells of identical molecular mass to the CAext released by trypsin from CO2-limited cells. Redox activity in the plasma membrane of intact cells was measured by following the light-dependent reduction of ferricyanide or NADP, the greatest activity being shown by CO2-limited cells. Overall the results suggest that high rates of redox activity under conditions of CO2-limitation were required for the activation of CAext.  相似文献   

4.
碳酸酐酶在中肋骨条藻光合作用中的作用   总被引:1,自引:0,他引:1  
探讨了在正常空气条件下生长的中肋骨条藻(Skeletonema costatum)的碳酸酐酶(CA)在其光合固碳中的作用.在中肋骨条藻的胞内和胞外均有CA活性,但胞外CA活性很低.CA抑制剂AZ(乙酰唑磺胺)对中肋骨条藻的光合放氧速率没有明显影响,而CA抑制剂EZ(乙氧苯唑胺)对其光合放氧速率有强烈的抑制作用.EZ的抑制作用使细胞最大光合速率、饱和光强和无机碳亲和力下降,无机碳的补偿点和光呼吸提高,使强光下光抑制作用增强.这些结果表明:中肋骨条藻的胞外CA在其光合作用中所起的作用较小,而其胞内CA通过催化胞内碳库中的HCO-3快速转化成CO2,提高胞内CO2的有效供给,从而提高细胞光合固碳能力和对逆境(高O2、强光和低CO2)的适应能力.  相似文献   

5.
Zn efficiency (ZE) is the ability of plants to maintain high yield under Zn-deficiency stress in the soil. Two bean (Phaseolus vulgaris L.) genotypes that differed in ZE, Voyager (Zn-efficient) and Avanti (Zn-inefficient), were used for this investigation. Plants were grown under controlled-environment conditions in chelate-buffered nutrient solution where Zn2+ activities were controlled at low (0.1 pM) or sufficient (150 pM) levels. To investigate the relative contribution of the root versus the shoot to ZE, observations of Zn-deficiency symptoms in reciprocal grafts of the two genotypes were made. After growth under low-Zn conditions, plants of nongrafted Avanti, self-grafted Avanti and reciprocal grafts that had the Avanti shoot scion exhibited Zn-deficiency symptoms. However nongrafted and self-grafted Voyager, as well as reciprocal grafts with the Voyager shoot scion, were healthy with no visible Zn-deficiency symptoms under the same growth conditions. More detailed investigations into putative shoot-localized ZE mechanisms involved determinations of leaf biomass production and Zn accumulation, measurements of subcellular Zn compartmentation, activities of two Zn-requiring enzymes, carbonic anhydrase and Cu/Zn-dependent superoxide dismutase (Co/ZnSOD), as well as the non-Zn-requiring enzyme nitrate reductase. There were no differences in shoot tissue Zn concentrations between the Zn-inefficient and Zn-efficient genotypes grown under the low-Zn conditions where differences in ZE were exhibited. Shoot Zn compartmentation was investigated using radiotracer (65Zn) efflux analysis and suggested that the Zn-efficient genotype maintains higher cytoplasmic Zn concentrations and less Zn in the leaf-cell vacuole, compared to leaves from the Zn-inefficient genotype under Zn deficiency. Analysis of Zn-requiring enzymes in bean leaves revealed that the Zn-efficient genotype maintains significantly higher levels of carbonic anhydrase and Cu/ZnSOD activity under Zn deficiency. While these data are not sufficient to allow us to determine the specific mechanisms underlying ZE, they certainly point to the shoot as a key site where ZE mechanisms are functioning, and could involve processes associated with Zn compartmentation and biochemical Zn utilization.Abbreviations CA Carbonic anhydrase - NR Nitrate reductase - SOD Superoxide dismutase - ZE Zinc efficiency This research was supported by a graduate fellowship awarded to G.H. by The Republic of Turkey  相似文献   

6.
The addition of Zn2+ to human carbonic anhydrase B holoenzyme was shown to enhance the protein fluorescence, and this enhancement was correlated with the inhibition of the p-nitrophenyl acetate esterase activity. The affinity for the inhibitory Zn2+ was increased when the ionic inhibitors, acetate or chloride, were added, suggesting that the inhibitory Zn2+-binding site is within the region of the protein that undergoes an anion-induced conformational change. A similar fluorescence enhancement was observed when Zn2+ was added to human carbonic anhydrase C and to bovine carbonic anhydrase, demonstrating that the binding site is not a thiol group. Circular-dichroism studies showed that the C isoenzyme but not the B isoenzyme underwent a major conformational change in the presence of Zn2+. A mechanism for the Zn2+-induced fluorescence enhancement was suggested on the basis of studies with simple compounds.  相似文献   

7.
Zinc (Zn) is an essential micronutrient for plants. The ability of plants to maintain significant yields under low Zn is termed Zn efficiency (ZE) and its genetic and mechanistic basis is still not well understood. Previously, we showed that root Zn uptake did not play a role in ZE. In the current study, Zn-efficient and -inefficient wheat (Triticum aestivum) genotypes were grown for 13 d in chelate buffer nutrient solutions at low (0.1 pM), sufficient (150 pM), and high (1 microM) Zn(2+) activities and analyzed for root-to-shoot translocation of Zn, subcellular leaf Zn distribution, and activity and expression of the Zn-requiring enzymes in leaves. No correlation between ZE and Zn translocation to the shoot was found. Furthermore, total and water-soluble concentrations of leaf Zn were not associated with ZE, and no differences in subcellular Zn compartmentation were found between Zn-efficient and -inefficient genotypes. However, the expression and activity of the Zn-requiring enzymes copper (Cu)/Zn superoxide dismutase (SOD) and carbonic anhydrase did correlate with differences in ZE. Northern analysis suggested that Cu/ZnSOD gene expression was up-regulated in the Zn-efficient genotype, Kirgiz, but not in inefficient BDME. Under Zn deficiency stress, the very Zn-efficient genotype Kirgiz and moderately Zn-efficient Dagdas exhibited an increased activity of Cu/ZnSOD and carbonic anhydrase when compared with Zn-inefficient BDME. These results suggest that Zn-efficient genotypes may be able to maintain the functioning of Zn-requiring enzymes under low Zn conditions; thus, biochemical Zn utilization may be an important component of ZE in wheat.  相似文献   

8.
Maize and chickpea plants were grown in a controlled environment with 0.5 M Zn or without Zn and various photosynthetic reactions were studied. The chlorophyll level, the rate of photosynthesis and photosystem II activity, the activity of carboxylating enzymes and that of carbonic anhydrase were suppressed by Zn deficiency in both plant species. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was quantified using polyacrylamide gel electrophoresis. Growing plants in a medium without Zn caused a decrease in the total protein level and in the levels of large and small subunits of Rubisco.  相似文献   

9.
Nine sugar beet lines were grown in a glasshouse on chernozem soil watered to 35, 50 and 65 % of maximal soil water capacity. After 12 d, plant water potential, net photosynthetic rate, contents of soluble proteins, DNA and RNA, proportion of ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) protein, and carbonic anhydrase activity were measured. As soil moisture decreased, the leaf water potential and net photosynthetic rate decreased. DNA and RNA content and carbonic anhydrase activity decreased under moderate drought, and increased with severe drought. RUBISCO protein proportion did not change significantly under decreased soil moisture, while the total soluble protein content decreased. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
The dynamics and pathways of CO2 movements across the membranes of mitochondria respiring in vitro in a CO2/HCO-3 buffer at concentrations close to that in intact rat tissues were continuously monitored with a gas-permeable CO2-sensitive electrode. O2 uptake and pH changes were monitored simultaneously. Factors affecting CO2 entry were examined under conditions in which CO2 uptake was coupled to electrophoretic influx of K+ (in the presence of valinomycin) or Ca2+. The role of mitochondrial carbonic anhydrase (EC 4.2.1.1) in CO2 entry was evaluated by comparison of CO2 uptake by rat liver mitochondria, which possess carbonic anhydrase, versus rat heart mitochondria, which lack carbonic anhydrase. Such studies showed that matrix carbonic anhydrase activity is essential for rapid net uptake of CO2 with K+ or Ca2+. Studies with acetazolamide (Diamox), a potent inhibitor of carbonic anhydrase, confirmed the requirement of matrix carbonic anhydrase for net CO2 uptake. It was shown that at pH 7.2 the major species leaving respiring mitochondria is dissolved CO2, rather than HCO-3 or H2CO3 suggested by earlier reports. Efflux of endogenous CO2/HCO-3 is significantly inhibited by inhibitors of the dicarboxylate and tricarboxylate transport systems of the rat liver inner membrane. The possibility that these anion carriers mediate outward transport of HCO-3 is discussed.  相似文献   

11.
Investigations using steady-state culture conditions indicate that carbonic anhydrase activity is correlated to the photosynthetic rate in Euglena in some but not all circumstances. When cultures grown with 5% CO2 were changed to air growth, the photosynthetic rate was independent of the carbonic anhydrase activity. While experiments using the inhibitor acetazolamide indicated a close correlation between photosynthetic capacity and carbonic anhydrase activity, the inhibitor was found to be nonspecific. Acetazolamide altered photosystem activities directly as measured by the photoreduction of DCPIP in chloroplast preparations, whole-cell fluorescence transients of chlorophyll a, and by whole chain photoelectron flow. Ethoxzolamide, another inhibitor of carbonic anhydrase, was also found to inhibit photosystem activities, i.e., the photoreduction of DCPIP, and in vivo photoelectron flow, at high concentrations. Cells grown in 5% CO2 were less sensitive to the effects of acetazolamide than cells exposed to air. The rate of electron flow in chloroplasts from cells grown with 5% CO2 and exposed to 10 mM acetazolamide was 2.5-fold faster than that of chloroplasts from air-grown cells exposed to the same concentration of inhibitor. The whole cell chlorophyll a fluorescence transients of cultures grown with high CO2 were completely different from those of air-grown cells and also showed fewer effects on exposure to acetazolamide. These results suggest a reevaluation of the hypothesis that carbonic anhydrase activity regulates photosynthesis. It is also apparent that results from air-grown and 5% CO2-grown cultures cannot be directly compared in such studies.  相似文献   

12.
Soybean (Glycine max L. ev. Columbus) seedlings grown in culture solution were treated with cadmium as CdSO4. Final concentrations of cadmium (Cd2+) in the solution were 0, 0.45, 0.90, and 1.35 μM. Soybean leaves, analyzed 10 days after Cd2+ was added to the culture solution, showed increased respiration rate and activities of malate dehydrogenase, acid phosphatase, ribonuclease, deoxyribonuclease, and peroxidase but decreased activity of carbonic anhydrase. Increased activity of hydrolytic enzymes and peroxidase reflects a general senescence response while the carbonic anhydrase decrease is consistent with an antagonism between cadmium and endogenous zinc. Chlorosis, epinasty, abscission of leaves, and decreased growth rate occurred in seedlings treated with 1.35 μM Cd2+.  相似文献   

13.
以海洋硅藻三角褐指藻为实验材料, 研究了不同氮磷比培养对其光合无机碳利用和碳酸酐酶活性的影响, 结果显示三角褐指藻生长速率在N:P=16:1时最大, 高于或低于16:1时明显下降, 表明其最适生长受到氮磷的限制。氮限制(N:P=4:1或1:1)导致叶绿素a含量分别下降30.1% 和47.6%, 磷限制(N:P=64:1或256:1)下降39.1%和52.4%, 但氮或磷限制对叶绿素c含量并没有明显影响。不同营养水平培养对光饱和光合速率具有明显的影响, 与营养充足培养相比, 在严重氮磷限制(N:P=1:1或256:1)培养下光饱和光合速率分别下降39.7%和48.0%, 光合效率与暗呼吸速率也明显下降。在氮磷限制培养下藻细胞pH补偿点明显下降; K0.5CO2值在磷限制下降低30%, 表明磷限制有助于提高细胞对CO2的亲和力, 但氮限制并没有明显影响。在氮磷限制培养的细胞反应液中Fe (CN)63-浓度下降速率较慢, 表明在氮磷限制环境中生长的细胞质膜氧化还原能力明显低于营养充足条件下生长的细胞。氮磷限制也导致胞内、外碳酸酐酶活性明显下降, 其中在氮限制下胞外碳酸酐酶活性分别下降50%和37.5%, 在磷限制下下降22.3%和42.1%。严重的氮(N:P=1:1)或磷(N:P=256:1)限制导致胞内碳酸酐酶活性下降36.5%和42.9%。研究结果表明, 三角褐指藻细胞在氮磷营养限制的环境中, 可以通过调节叶绿素含量、无机碳的利用方式和碳酸酐酶的活性以维持适度的生长。    相似文献   

14.
不同理化因子对雨生红球藻CG-11碳酸酐酶活性的影响   总被引:1,自引:0,他引:1  
以雨生红球藻CG-11为实验藻株,探讨在不同CO2、HCO3-、Zn2+浓度以及pH和氮磷比例条件下,藻细胞的碳酸酐酶活性对这些理化因子的响应。结果表明,通入空气实验组的碳酸酐酶活性最高,为(75.20±1.53)U·mg-1(Chla),通入5%CO2条件下的碳酸酐酶活性为(9.96±1.43)U·mg-1(Chla);高浓度HCO3-对碳酸酐酶活性亦具有明显抑制作用,培养液中可溶性无机碳的浓度与碳酸酐酶活性呈负相关;在实验设置的pH范围内,pH9.0时碳酸酐酶活性最高,为(62.32±3.25)U·mg-1(Chla);适当的氮磷比与Zn2+浓度显著提高了雨生红球藻CG-11的生长速率,碳酸酐酶的活性亦有明显提高。  相似文献   

15.
A full-length cDNA clone encoding carbonic anhydrase was isolated from an Arabidopsis thaliana (Columbia) leaf library. Comparison of the derived amino acid sequence obtained from this clone with those of pea and spinach reveals a considerable degree of identity. The carbonic anhydrase cDNA was used to probe the level of RNA encoding this protein in the leaves of plants grown in elevated CO2 (660 ppm). We have found that under these conditions the steady-state level of carbonic anhydrase mRNA was increased in comparison with control plants grown in normal atmospheric concentrations of CO2 (330 ppm). This raises the intruiging possibility that there exists in higher plants a mechanism for perceiving and responding to changes in environmental CO2 concentrations at the genetic level.  相似文献   

16.
海藻群体密度过大常引起海水中CO_2供应和光照强度降低,为探讨这两种环境条件对坛紫菜光合作用的影响,在4种条件下培养坛紫菜,即390μL·L-1(正常空气)+全日光、20μL·L-1(低CO_2供应)+全日光、390μL·L-1+低日光(光照强度为全日光的20%)、20μL·L-1+低日光,测定藻体的碳酸酐酶活性、光合速率,以及不同温度下开放状态光系统Ⅱ最大量子产量(F_ v'/F _m').结果表明:低CO_2供应和低日光下生长的坛紫菜具有较高的碳酸酐酶活性,并且低日光能够提高海藻最大碳饱和光合放氧速率(V max).在低日光下,生长在低CO_2海水中的坛紫菜V max显著低于正常CO_2海水中生长的海藻V max;在全日光下,低CO_2下生长的海藻V max却高于正常CO_2下生长的海藻V max.生长在低CO_2和低日光条件下的海藻在低温(10℃)和高温(30℃)下,藻体的F_ v'/F _m'变化不明显;而生长在390μL·L-1+全日光环境中的海藻在高温环境下200 min后,藻体的F_ v'/F _m'相比40 min时的F_ v'/F _m'降低76.4%.低CO_2和低日光提高坛紫菜光合无机碳利用能力以及适应短期温度变化的能力,而低CO_2对海藻光合速率的影响与海藻所处光照环境有关.  相似文献   

17.
为了认识海洋浮游藻类在碳充足和碳受限条件下对水体中溶解无机碳(DIC)的利用方式与可能机理,对13种海洋浮游藻类在不同pH和CO2浓度及不同DIC条件下细胞外碳酸酐酶(CA)的活性进行了分析测定.结果显示:13种藻中,只有Amphidinium carterae和Prorocentrum minimum在碳充足条件下具细胞外CA活性.Melosira sp.、Phaeodactylum tricornutum、Skeletonema costatum、Thalassiosira rotula、Emiliania huxleyi和Pleurochrysis carterae则在碳受限条件下才具细胞外CA活性.Chaetoceros compressus、Glenodinium foliaceum、Coccolithus pelagicus、 Gephrocapsa oceanica和Heterosigma akashiwo即使在碳受限条件下也未检测到细胞外CA活性.应用封闭系统中pH漂移技术和阴离子交换抑制剂4′4′-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS)等的研究表明,Coc. pelagicus和G. oceanica可通过阴离子交换机制进行HCO-3的直接利用.H. akashiwo没有潜在的HCO-3直接利用或细胞外CA催化的HCO-3利用.  相似文献   

18.
干旱缺水已成为植物光合作用和生长发育主要的限制因素,在干旱胁迫下,作物的生长发育受到影响,依据作物的形态变化进行浇灌属于延后性灌溉,未必能完全补偿对作物生长造成的影响。确定灌溉时间点,既确保植物正常生长不受影响,也可以提高水分利用效率,减少水资源浪费,从而达到节水灌溉的目的。该研究以温室土槽栽培番茄幼苗为材料,设定土壤含水量为30.00%(对照)、21.00%、18.00%、15.00%、12.00%、9.00%,研究了干旱胁迫对番茄叶片光合特性、抗氧化酶(超氧化物歧化酶、过氧化物酶、过氧化氢酶)、碳酸酐酶活性变化的影响,并以此表征番茄幼苗需水信息。结果表明:随着干旱胁迫程度的增加,叶片水势逐渐降低。超氧化物歧化酶、过氧化物酶及过氧化氢酶等抗氧化酶在番茄幼苗耐受水分胁迫中起到重要的作用;超氧化物歧化酶、过氧化物酶在干旱胁迫条件下反应更迅速,但过氧化氢酶相对于超氧化物歧化酶、过氧化物酶对干旱胁迫的耐受能力更强;干旱胁迫条件下抗氧化酶活性的转折点在15.00%土壤含水量左右;水分胁迫条件下碳酸酐酶参与了对光合作用的调节,并在15.00%土壤含水量时活性升至最高,使得番茄仍能维持较高的光合速率,以维持正常的生理机能;随着干旱胁迫程度的加剧(12.00%土壤含水量),碳酸酐酶活性与净光合速率都迅速下降。综上分析,当土壤含水量低于15.00%并高于12.00%时,对作物进行灌溉最为合适。抗氧化酶及碳酸酐酶活性可为作物最佳灌溉时间点的预测提供科学依据。  相似文献   

19.
In the marine phytoplankton species tested, a possible link between exofacial ferricyanide reduction at the plasma membrane of intact cells, inorganic carbon status of the cells, and extracellular carbonic anhydrase (CA) activity is proposed. In species with no extracellular CA activity under carbon-limited or carbon-replete conditions, barely detectable ferricyanide reduction was observed. Species in which extracellular CA was only detected under carbon-limited conditions showed high rates of exofacial ferricyanide reduction, as shown previously for Skeletonema costatum. Immunological analysis has demonstrated that the CA protein was present in both carbon-limited and carbon-replete cells, even though the CA activity could only be detected when inorganic carbon was limiting. Incubation of the inactive extracellular CA protein from carbon-replete cells with DTT caused activation of the enzyme. It is proposed that CA limitation in the light promotes proton extrusion and increased plasma membrane redox activity, which result in the protonation and activation of the extracellular CA.  相似文献   

20.
光和海洋酸化(CO2浓度升高)分别对海洋硅藻的光合能力具有不同程度的影响, 但两者的耦合响应被较少关注。研究以三角褐指藻作为实验材料, 测定了不同光强下CO2浓度升高对三角褐指藻的生长、净光合速率、生化组分、胞外碳酸酐酶(eCA)活性和核酮糖-1,5-二磷酸羧化/氧化酶(Rubisco)活性的影响。结果显示在低光下, CO2浓度对三角褐指藻的生长和净光合速率(Pn)并没有显著影响, 而在高光下, 具有明显的影响。无论是在高光或是低光下, eCA活性、叶绿素和可溶性蛋白的含量都随着CO2浓度的升高而降低。在低光下, 高浓度CO2 (HC)培养下的Rubisco活性分别是低浓度CO2 (LC)和中浓度CO2 (MC)的2.42和1.39倍, 而在高光下, HC培养下的Rubisco活性分别是LC和MC的6.72和3.45倍。以上结果表明硅藻能够通过调节光合生理特征和CCM运行中能量的分配来适应环境中光强和CO2浓度的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号