首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aged garlic extract (AGE) possesses multiple biological activities. We evaluated the protective effect of S-allyl cysteine (SAC), one of the organosulfur compounds of AGE, against carbon tetrachloride (CCl4)-induced acute liver injury in rats. SAC was administrated intraperitoneally (50–200 mg/kg). SAC significantly suppressed the increases of plasma ALT and LDH levels. SAC also attenuated histological liver damage. CCl4 administration induced lipid peroxidation accompanied by increases in the plasma malondialdehyde and hepatic 4-hydroxy-2-nonenal levels, and SAC dose-dependently attenuated these increases. The hepatic total level of hydroxyoctadecadienoic acid (HODE), a new oxidative stress biomarker, was closely correlated with the amount of liver damage. These results suggest that SAC decreased CCl4-induced liver injury by attenuation of oxidative stress, and may be a better therapeutic tool for chronic liver disease.  相似文献   

2.
Dehydroepiandrosterone (DHEA), a lipid soluble steroid, administered to rats (100 mg/kg b.wt) by a single intraperitoneal injection, increases to twice its normal level in the liver microsomes. Microsomes so enriched become resistant to lipid peroxidation induced by incubation with carbon tetrachloride in the presence of a NADPH-regenerating system: also the lipid peroxidation-dependent inactivation of glucose-6-phosphatase and gamma-glutamyl transpetidase due to the haloalkane are prevented. Noteworthy, the liver microsomal drug-metabolizing enzymes and in particular the catalytic activity of cytochrome P450IIE1, responsible for the CCl4-activation, are not impaired by the supplementation with the steroid. Consistently, in DHEA-pretreated microsomes the protein covalent binding of the trichloromethyl radical (CCl3°), is similar to that of not supplemented microsomes treated with CCl4. It thus seems likely that DHEA protects liver microsomes from oxidative damage induced by carbon tetrachloride through its own antioxidant properties rather than inhibiting the metabolism of the toxin.  相似文献   

3.
Effect of aqueous extract of garlic on hepatic injury due to lead-induced oxidative stress in experimental rats has been investigated. Lead acetate (LA) at a dose of 15 mg/kg body wt was administered ip to rats for 7 consecutive days to induce hepatic injury. Freshly prepared aqueous garlic extract (AGE) at a dose of 50 mg/kg body wt was fed orally to rats 1 h before LA treatment for similar period. LA treatment caused hepatic injury as evident from increased activities of serum glutamate pyruvate transaminase (SGPT) and alkaline phosphatase (ALP), increased serum bilirubin level and damage in the tissue morphology. Lead-induced oxidative stress in liver was evident from increased levels of lipid peroxidation and reduced glutathione. The decreased activity of superoxide dismutase (SOD) and an increased activity of catalase as well as an increased activity of xanthine oxidase (XO) indicate generation and possible accumulation of reactive oxygen intermediates. Furthermore, altered activities of lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), alpha-keto glutarate dehydrogenase (alpha-KGDH) and succinate dehydrogenase (SDH) also indicate an impaired substrate utilization and generation of oxidative stress. All these changes were found to be mitigated when the rats were pre-treated with the AGE. Results indicate that AGE has the potential to ameliorate lead-induced hepatic injury due to oxidative stress in rats. The protective effects may be due to the antioxidant properties of AGE and may have future therapeutic relevance.  相似文献   

4.
戚梦  刘城移  李琳  袁源  吴小平  傅俊生 《菌物学报》2019,38(9):1510-1518
本文探究蛹虫草活性成分虫草素对四氯化碳(CCl4)造成的小鼠急性肝损伤的保护作用及其分子机制。首先建立四氯化碳致小鼠急性肝损伤的动物模型,通过检测血清生化指标、肝功指标的变化及HE染色观察组织切片病理的病变情况,评价虫草素的保肝效果,进一步通过Western blot检测虫草素能否通过激活Nrf-2/Keap1信号通路及其下游抗氧化因子(HO-1、NQO-1)的表达来提高机体抗氧化损伤能力以及抑制炎症因子(TNFα、TNFβ、IL-6、IL-10)的表达。对比模型组结果显示,虫草素能极显著降低(P<0.01)小鼠血清中ALT、AST及肝脏中MDA水平,并能极显著提高肝脏中SOD水平(P<0.01);HE染色结果显示虫草素能有效降低改善受损肝组织中的炎细胞浸润及纤维组织增生;Western blot结果表明虫草素能够通过激活Nrf-2信号通路,促进下游抗氧化因子及抗炎因子的表达,从而降低炎症反应。虫草素对CCl4致小鼠急性肝损伤具有一定的保护作用,其机制与Nrf-2信号通路相关,实验结果为后续蛹虫草及虫草素的开发应用奠定基础。  相似文献   

5.
本研究对一株优质蛹虫草菌株MF27不同提取物进行体外抗氧化活性比较,筛选得到高抗氧化活性提取物,并进一步探究该提取物对CCl4诱导的小鼠肝损伤的修复作用。以DPPH自由基和羟自由基的清除率为抗氧化评价指标,从菌丝体发酵液、菌丝体水提物/醇提物、以及子实体水提物/醇提物中筛选菌株MF27的高抗氧化活性提取物;以CCl4致小鼠急性肝损伤为模型,通过检测血清生化指标、肝功指标的变化,来评价该高活性提取物的体内抗氧化保肝效果。体外抗氧化实验结果表明,MF27的不同提取物均具有较好的体外抗氧化活性,但对清除DPPH和OH自由基能力最好的提取物是子实体水提物,其对DPPH自由基的半数有效浓度(EC50)为0.096mg/mL,对羟自由基的半数有效浓度(EC50)为0.196mg/mL,当在1mg/mL 时对DPPH自由基的清除率为94.94%,对羟自由基的清除率为70.17%;体内抗氧化保肝结果显示,给药组(子实体水提物)相比模型组而言,小鼠血清中ALT、AST以及肝脏中MDA水平极显著降低(P<0.01、SOD水平极显著升高(P<0.01),表明子实体水提物能有效改善氧化性肝损伤,同时与阳性对照(联苯双酯)对比,给药组在肝脏指数上表现出相当的作用(P>0.05)。本研究表明菌株MF27的最有效抗氧化活性提取物是子实体水提物,它对体内氧化性肝损伤有一定的修复能力,揭示MF27子实体水提物具有成为抗氧化性肝损伤功能产品的潜力。  相似文献   

6.
The aim of the study was to examine the effects of epigallocatechin-3-gallate (EGCG) on hepatic fibrogenesis and on cultured hepatic stellate cells (HSCs). The rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis was used to assess the effect of daily intraperitoneal injections of EGCG on the indexes of fibrosis. Histological and hepatic hydroxyproline examination revealed that EGCG significantly arrested progression of hepatic fibrosis. EGCG caused significant amelioration of liver injury (reduced activities of serum alanine aminotransferase and aspartate aminotransferase). The development of CCl4-induced hepatic fibrosis altered the redox state with a decreased hepatic glutathione and increased the formation of lipid peroxidative products, which were partially normalized by treatment with EGCG, respectively. Moreover, EGCG markedly attenuated HSC activation as well as matrix metalloproteinase (MMP)-2 activity. In cultured stellate cell, the expression of MMP-2 mRNA and protein were substantially reduced by EGCG treatment. Concanavalin A-induced activation of secreted MMP-2 was inhibited by EGCG through the influence of membrane type 1-MMP activity. These results demonstrate that administration of EGCG may be useful in the treatment and prevention of hepatic fibrosis.  相似文献   

7.
Ischemia/reperfusion (I/R) is a pivotal mechanism of liver damage after liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol (CBD), the nonpsychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, and gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor α (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, intercellular adhesion molecule 1 mRNA levels; tissue neutrophil infiltration; nuclear factor κB (NF-κB) activation), stress signaling (p38MAPK and JNK), and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress, and cell death and also attenuated the bacterial endotoxin-triggered NF-κB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecule expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent of classical CB1/2 receptors.  相似文献   

8.
Acute CCl4 hepatotoxicity is thought to occur as a result of free generated from the metabolism of CCl4 in the liver. With the use of MRI it is possible to detect in vivo a CCl4-induced edematous region surrounding the major branch of the hepatic portal vein in the right lobe. Inhibition of the CCl4-induced response has been obtained by pretreatment with the spin trap, PBN, 30 min prior to CCl4 exposure. The inhibitory effect of two new traps, M3PO or methyl-DMPO, and PhM2PO or phenyl-DMPO, on in vivo CCl4-induced acute hepatotoxicity was investigated. Both PhM2PO and M3PO were found to inhibit the CCl4-induced response at lower concentrations (0.35 M/kg body weight) than PBN (0.70 M/kg body weight). However, both M3PO and PhM2PO were also found to induce and edematous response at the same concentrations used for the PBN studies (0.70 M/kg body weight). PhM2PO, at a concentration of 0.35 M/kg body weight, was 93% as efficient as PBN, at a concentration of 0.70 M/kg body weight; whereas M3PO, at a concentration of 0.35 M/kg, was 89% as efficient as PBN at 0.70 M/kg body weight. Electron micrographs were obtained from small liver sections taken in proximity to the major branch of the hepatic portal veins of all treatment groups. The electron microscopy investigations support the MRI findings.  相似文献   

9.
The goal of these investigations was to measure levels of DNA in the plasma of mice following administration of hepatotoxic agents to induce apoptotic or necrotic cell death and determine any differences in the release of this marker depending upon death pathway. For this purpose, the effects of varying doses of anti-Fas, acetaminophen (APAP) or carbon tetrachloride (CCl4) were assessed in normal mice. Plasma DNA was measured fluorometrically by the dye PicoGreen while lactate dehydrogenase (LDH) and caspase 3, other molecules released with cell injury or death, were measured by enzymatic assays. Histology was used to assess the occurrence of apoptosis or necrosis. Results of these experiments indicate that increased blood DNA levels occurred with all three agents and were highest with anti-Fas and CCl4; caspase 3 levels were much higher with anti-Fas than the other agents. Histological examination confirmed the predominance of apoptotic death with anti-Fas and necrotic death with APAP and CCl4. These results indicate that increased blood DNA is common in hepatotoxic injury and is a feature of both apoptotic and necrotic death.  相似文献   

10.
The effects of ozone treatment on the injury associated to hepatic ischemia-reperfusion (I/R) was evaluated. Ozone treatment (1 mg/kg daily during 10 days by rectal insufflation) is shown to be protective as it attenuated the increases in transaminases (AST, ALT) and lactate levels observed after I/R. I/R leads to a decrease in endogenous antioxidant (SOD and glutathione) and an increase in reactive oxygen species (H2O2) with respect to the control group. However, ozone treatment results in a preservation (glutathione) or increase (SOD) in antioxidant defense and maintains H2O2 at levels comparable to those in the control group. The present study reports a protective effect of ozone treatment on the injury associated to hepatic I/R. The effectiveness of ozone could be related to its action on endogenous antioxidants and prooxidants balance in favour of antioxidants, thus attenuating oxidative stress.  相似文献   

11.
The cellular localization of lipid hydroperoxides was determined for the first time in mitochondria, microsomes and cytosol of rat liver using a specific method involving chemical derivatization and HPLC. Mitochondria contained the highest level of hydroperoxides. After 6h of intragastric administration of carbon tetrachloride (CCl4) to rats (2 ml/kg body weight), the concentration of lipid hydroperoxides increased significantly in liver mitochondria and cytochrome oxidase activity was inhibited to 35% of the control rats. The mitochondrial content of haem a decreased to 60% of the control at 12 h of CCl4 administration. In vitro reaction of mitochondria with CCl4 caused inactivation of cytochrome oxidase. These observations suggested that cytochrome oxidase and haem a in mitochondria were targets of CCl4.  相似文献   

12.
While moderate caloric restriction has beneficial effects on animal health state, fasting may be harmful. The present investigation was designed to test how fasting affects oxidative stress, and to find out whether the effects are opposite to those previously found in caloric restriction studies. We have focused on one of the main determinants of aging rate: the rate of mitochondrial free radical generation. Different parameters related to lipid and protein oxidative damage were also analyzed. Liver mitochondria from rats subjected to 72 h of fasting leaked more electrons per unit of O2 consumed at complex III, than mitochondria from ad libitum fed rats. This increased leak led to a higher free radical generation under state 3 respiration using succinate as substrate. Regarding lipids, fasting altered fatty acid composition of hepatic membranes, increasing the double bond and the peroxidizability indexes. In accordance with this, we observed that hepatic membranes from the fasted animals were more sensitive to lipid peroxidation. Hepatic protein oxidative damage was also increased in fasted rats. Thus, the levels of oxidative modifications, produced either indirectly by reactive carbonyl compounds (Nepsilon- malondialdehyde-lysine), or directly through amino acid oxidation (glutamic and aminoadipic semialdehydes) were elevated due to the fasting treatment in both liver tissue and liver mitochondria. The current study shows that severe food deprivation increases oxidative stress in rat liver, at least in part, by increasing mitochondrial free radical generation during state 3 respiration and by increasing the sensitivity of hepatic membranes to oxidative damage, suggesting that fasting and caloric restriction have different effects on liver mitochondrial oxidative stress.  相似文献   

13.
In the present study, beneficial effect of S‐allyl cysteine (SAC) was evaluated in the lipopolysaccharide/d ‐galactosamine (LPS/d ‐Gal) model of acute liver injury (ALI). To mimic ALI, LPS and d ‐Gal (50 μg/kg and 400 mg/kg, respectively) were intraperitoneally administered and animals received SAC per os (25 or 100 mg/kg/d) for 3 days till 1 hour before LPS/d ‐Gal injection. Pretreatment of LPS/d ‐Gal group with SAC‐lowered activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and partially reversed inappropriate alterations of hepatic oxidative stress‐ and inflammation‐related biomarkers including liver reactive oxygen species, malondialdehyde, and hepatic activity of the defensive enzyme superoxide dismutase, ferric reducing antioxidant power (FRAP), toll‐like receptor‐4 (TLR4), cyclooxygenase 2, NLR family pyrin domain containing 3 (NLRP3), caspase 1, nuclear factor κB (NF‐κB), interleukin 1β (IL‐1β), IL‐6, tumor necrosis factor‐α, and myeloperoxidase activity. Additionally, SAC was capable to ameliorate apoptotic biomarkers including caspase 3 and DNA fragmentation. In summary, SAC can protect liver against LPS/d ‐Gal by attenuation of neutrophil infiltration, oxidative stress, inflammation, apoptosis, and pyroptosis which is partly linked to its suppression of TLR4/NF‐κB/NLRP3 signaling.  相似文献   

14.
目的:探讨柔木丹(RMD)对改善CCl4诱导的小鼠肝纤维化的TGF-β1/果蝇抗生物皮肤生长因子蛋白家族4号因子(Smad4)信号通路机制。方法:雄性BALB/c小鼠随机分为空白对照组、模型组、RMD治疗组(n=11)。腹腔注射CCl4诱导小鼠肝纤维化模型,模型及RMD治疗组小鼠腹腔注射20%CCl4(CCl4∶橄榄油=1∶4),注射量为2.5 ml/kg,空白对照组以同样方法注射等量橄榄油,每周2次;第2周起调整模型及RMD治疗组小鼠CCl4腹腔注射量为5 ml/kg(空白对照组注射等量橄榄油),每周2次。成模后,RMD治疗组小鼠使用RMD灌胃给药(6.2 g/(kg·d);空白对照组、模型组使用等量的水灌胃),模型及RMD治疗组小鼠继续腹腔注射20%CCl4,注射量为1.5 ml/kg(空白对照组注射等量橄榄油),每周1次,持续3周。采取各组小鼠血清样本检测谷丙转氨酶(ALT)、谷草转氨酶(AST)活性;采取各组小鼠肝组织样本使用HE、Masson、原...  相似文献   

15.
This study examined effects of S-allyl cysteine (SAC) on carbon tetrachloride (CCl4)-induced interstitial pulmonary fibrosis in Wistar rats. CCl4 (0.5 ml/kg) was intraperitoneally injected into rats twice a week for 8 weeks, and SAC (50, 100, or 200 mg/kg), N-acetyl cysteine (NAC, 200 or 600 mg/kg), or L-cysteine (CYS, 600 mg/kg) were orally administrated to rats everyday for 8 weeks. SAC significantly reduced the increases of transforming growth factor beta, lipid peroxides, AST, and ALT in plasma, induced by CCl4. Although CCl4 is mainly metabolized by hepatic cytochrome P450, CCl4 induced systemic inflammation and some organ fibrosis. SAC dose-dependently and significantly attenuated CCl4-induced systemic inflammation and fibrosis of lung. SAC also inhibited the decrease of thiol levels, the increase of inducible nitric oxide synthase expression, the infiltration of leukocytes, and the generation of reactive oxygen species in lungs. Although NAC and CYS attenuated CCl4-induced pulmonary inflammation and fibrosis, the order of preventive potency was SAC > NAC > CYS according to their applied doses. These results indicate that SAC is more effective than other cysteine compounds in reducing CCl4-induced lung injury, and might be useful in prevention of interstitial pulmonary fibrosis.  相似文献   

16.
Ketoconazole (KCZ) is the most commonly used systemic antifungal drug. However, long-term treatment of KCZ induces hepatic injury. Oxidative stress is involved in KCZ-induced hepatic injury. Oxidative stress plays an important role in apoptosis-associated hepatic damage. Sesame oil is rich in potent antioxidants and antifungal constituents. It attenuates hepatic injury by inhibiting oxidative stress. Thus, sesame oil may protect against KCZ-induced oxidative stress, apoptosis and hepatic damage. The aim of the present study was to investigate the protective effect of sesame oil as a nutritional supplement on KCZ-induced hepatic injury in mice. KCZ (300 mg/kg/day) was administered by gastric intubation; 30 min later, sesame oil (0, 0.0625, 0.125, 0.25 or 0.5 ml/kg/day; p.o.) was administered to mice for 14 days. Blood and liver tissue were collected. Hepatic injury was evaluated by serum biochemistry and histology. Oxidative stress was evaluated by myeloperoxidase activity, p47-phox, reactive oxygen species generation, lipid peroxidation and glutathione level. Apoptosis was evaluated by p53, caspase-3, Bcl-2, Bax and Cyto-C expression. Osteopontin was measured to assess liver healing. Sesame oil attenuated hepatic injury; it also decreased oxidative stress and apoptosis in KCZ-treated mice. Sesame oil may be used as a nutritional supplement with existing antifungal therapies to neutralize the adverse hepatotoxic nature of antifungal drugs by attenuating hepatic apoptosis through redox system to protect and heal liver injury in KCZ-treated mice.  相似文献   

17.
The formation, reactivity and toxicity of aldehydes originating from lipid peroxidation of cellular membranes are reviewed. Very reactive aldehydes, namely 4-hydroxyalkenals, were first shown to be formed in autoxidizing chemical systems. It was subsequently shown that 4-hydroxyalkenals are formed in biological conditions, i.e. during lipid peroxidation of liver microsomes incubated in the NADPH-Fe systems. Our studies carried out in collaboration with Hermann Esterbauer which led to the identification of 4-hydroxynonenal (4-HNE) are reported. 4-HNE was the most cytotoxic aldehyde and was then assumed as a model molecule of oxidative stress. Many other aldehydes (alkanals, alk-2-enals and dicarbonyl compounds) were then identified in peroxidizing liver microsomes or hepatocytes. The in vivo formation of aldehydes in liver of animals intoxicated with agents that promote lipid peroxidation was shown in further studies. In a first study, evidence was forwarded for aldehydes (very likely alkenals) bound to liver micro-somal proteins of CCl4 or BrCCl3-intoxicated rats. In a second study, 4-HNE and a number of other aldehydes (alkanals and alkenals) were identified in the free (non-protein bound) form in liver extracts from bromoben-zene or ally-1 alcohol-poisoned mice. The detection of free 4-HNE in the liver of CCl4 or BrCCl3-poisoned animals was obtained with the use of an electrochemical detector, which greatly increased the sensitivity of the HPLC method. Furthermore, membrane phospho-lipids bearing carbonyl groups were demonstrated in both in vitro (incubation of microsomes with NADPH-Fe) and in vivo (CCl4 or BrCCl3 intoxication) conditions. Finally, the results concerned with the histochemical detection of lipid peroxidation are reported. The methods used were based on the detection of lipid peroxidation-derived carbonyls. Very good results were obtained with the use of fluorescent reagents for carbonyls, in particular with 3-hydroxy-2-naphtoic acid hydrazide (NAH) and analysis with confocal scanning fluorescence microscopy with image video analysis. The significance of formation of toxic aldehydes in biological membranes is discussed.  相似文献   

18.
The aim of this study was to assess the antioxidant and antifibrotic effects of chronic administration of aqueous garlic extract on liver fibrosis induced by biliary obstruction in rats. Liver fibrosis was induced in male Wistar albino rats by bile duct ligation and scission (BDL). Aqueous garlic extract (AGE, 1 ml/kg, i.p., corresponding to 250 mg/kg) or saline was administered for 28 days. At the end of the experiment, rats were killed by decapitation. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver functions and tissue damage, respectively. Tumor necrosis factor-alpha (TNF-alpha) was also assayed in serum samples. Liver tissues were taken for determination of the free radicals, renal malondialdehyde (MDA) levels, an end product of lipid peroxidation; glutathione (GSH) levels, a key antioxidant; and myeloperoxidase (MPO) activity, as an indirect index of neutrophil infiltration. Hepatic collagen content, as a fibrosis marker was also determined. Serum AST, ALT, LDH, and TNF- alpha levels were elevated in the BDL group as compared to control group, while this increase was significantly decreased by AGE treatment. Hepatic GSH levels, significantly depressed by BDL, were elevated back to control levels in AGE-treated BDL group. Increases in tissue free radical and MDA levels and MPO activity due to BDL were reduced back to control levels by AGE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with AGE treatment. Since AGE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function, it seems likely that AGE with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver fibrosis and oxidative injury due to biliary obstruction.  相似文献   

19.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

20.
Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity through triggering inflammatory and oxidative stress cascades. The aim of the current investigation was to study the possible protective effects of tangeretin on cisplatin-induced hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histopathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers were investigated compared to silymarin. Tangeretin pre-treatment significantly improved liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total cholesterol and triglycerides) and diminished histopathologic structural damage in liver tissues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indicated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) pathway, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation, oxidative stress, MAPKs and apoptotic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号