首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy transfer and pigment arrangement in intact cells of the green sulfur bacteria Prosthecochloris aestuarii, Chlorobium vibrioforme and chlorobium phaeovibrioides, containing bacteriochlorophyll (BChl) c, d or e as main light harvesting pigment, respectively, were studied by means of absorption, fluorescence, circular dichroism and linear dichroism spectroscopy at low temperature. The results indicate a very similar composition of the antenna in the three species and a very similar structure of main light harvesting components, the chlorosome and the membrane-bound BChl a protein. In all three species the Qy transition dipoles of BChl c, d or e are oriented approximately parallel to the long axis of the chlorosome. Absorption and fluorescence excitation spectra demonstrate the presence of at least two BChl c-e pools in the chlorosomes of all three species, long-wavelength absorbing BChls being closest to the membrane. In C. phaeovibrioides, energy from BChl e is transferred with an efficiency of 25% to the chlorosomal BChl a at 6 K, whereas the efficiency of transfer from BChl e to the BChl a protein is 10%. These numbers are compatible with the hypothesis that the chlorosomal BChl a is an intermediary in the energy transfer from the chlorosome to the membrane.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - CD circular dichroism - LD linear dichroism  相似文献   

2.
Two sub-strains of the anoxygenic photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 were derived from the same clone and could be discriminated only by their possession of either bacteriochlorophyll (BChl) c or d as the major pigment in the peripheral light-harvesting antenna system, chlorosome (Saga Y et al. (2003) Anal Sci 19: 1575–1579). In the presence of a proper amount of oxygen in the initial culture medium, the BChl d strain showed longer retardation on its growth initiation than the BChl c strain, indicating that the latter was advantageous for survival under aerobic light conditions which produced reactive oxygen species in vivo. The result would be ascribable to the difference of the midpoint potentials between two kinds of chlorosomes formed by self-aggregates of BChl c and d as measured by their fluorescence quenching.  相似文献   

3.
The composition, abundance and apparent molecular masses of chlorosome polypeptides from Chlorobium tepidum and Chlorobium vibrioforme 8327 were compared. The most abundant, low-molecular-mass chlorosome polypeptides of both strains had similar electrophoretic mobilities and abundances, but several of the larger proteins were different in both apparent mass and abundance. Polyclonal antisera raised against recombinant chlorosome proteins of Cb. tepidum recognized the homologous proteins in Cb. vibrioforme, and a one-to-one correspondence between the chlorosome proteins of the two species was confirmed. As previously shown [Ormerod et al. (1990) J Bacteriol 172: 1352–1360], acetylene strongly suppressed the synthesis of bacteriochlorophyll c in Cb. vibrioforme strain 8327. No correlation was found between the bacteriochlorophyll c content of cells and the cellular content of chlorosome proteins. Nine of ten chlorosome proteins were detected in acetylene-treated cultures, and the chlorosome proteins were generally present in similar amounts in control and acetylene-treated cells. These results suggest that the synthesis of chlorosome proteins and the assembly of the chlorosome envelope is constitutive. It remains possible that the synthesis of bacteriochlorophyll c and its insertion into chlorosomes might be regulated by environmental parameters such as light intensity.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
Fluorescence Detected Magnetic Resonance (FDMR) spectra have been measured for whole cells and isolated chlorosomal fractions for the green photosyntheic bacteria Chlorobium phaeobacteroides (containing bacteriochlorophyll e, and isorenieratene as major carotenoid) and Chlorobium limicola (containing bacteriochlorophyll c, and chlorobactene as major carotenoid). The observed transition at 237 MHz (identical in both bacteria) and > 1100 MHz can be assigned, by analogy with published data on other carotenoids, to the 2E and D + E transitions, respectively, of Chlorobium carotenoids. Their zero field splitting (ZFS) parameters are estimated to be: |D|=0.0332 cm–1 and |E|=0.0039 cm–1 (chlorobactene), and |D|=0.0355 cm–1 and |E|=0.0039 cm–1 (isorenieratene). In the intermediate frequency range 300–1000 MHz the observed transitions can be assigned to chlorosomal bacteriochlorophylls c and e, and to bacteriochlorophyll a located in the chlorosome envelope and water-soluble protein. The bacteriochlorophyll e triplet state measured in 750 nm fluorescence (aggregated chlorosomal BChl e) is characterised by the ZFS parameters: |D|=0.0251 cm–1 and |E|=0.0050 cm–1.Abbreviations BChl - bacteriochlorophyll - BPh - bacteriopheophytin - Chl. - Chlorobium - F(A)(O)DMR - fluorescence (absorption) (optical) detected magnetic resonance - FF - fluorescence fading - ISC - intramolecular intersystem crossing - RC - reaction center - ZFS - zero field splitting  相似文献   

5.
The pigment composition and energy transfer pathways in isolated chlorosomes ofChlorobium phaeovibrioides andChlorobium vibrioforme were studied by means of high performance liquid chromatography (HPLC) and picosecond absorbance difference spectroscopy. Analysis of pigment extracts of the chlorosomes revealed that they contain small amounts of bacteriochlorophyll (BChl)a esterified with phytol, whereas the BChlsc, d ande are predominantly esterified with farnesol. The chlorosomal BChla content inC. phaeovibrioides andC. vibrioforme was found to be 1.5% and 0.9%, respectively. The time resolved absorbance difference spectra showed a bleaching shifted to longer wavelengths as compared to the Qy absorption maxima and in chlorosomes ofC. vibrioforme also an absorbance increase at shorter wavelengths was observed. These spectral features were ascribed to excitation of oligomers of BChle and BChlc/d, respectively. One-color and two-color pump-probe kinetics ofC. phaeovibrioides showed rapid energy transfer to long-wavelength absorbing BChle oligomers, followed by trapping of excitations by BChla with a time constant of about 60 ps. Time resolved anisotropy measurements inC. vibrioforme showed randomization of excitations among BChla molecules with a time constant of about 20 ps, indicating that BChla in the baseplate is organized in clusters. One-color and two-color pump-probe measurements inC. vibrioforme showed rapid energy transfer from short-wavelength to long-wavelength absorbing oligomers with a time constant of about 11 ps. Trapping of excitations by BChla in this species could not be resolved unambiguously due to annihilation processes in the BChla clusters, but may occur with time constants of 15, 70 and 200 ps.  相似文献   

6.
The pigment composition of two species of green-colored BChl c-containing green sulfur bacteria (Chlorobium limicola and C. chlorovibrioides) and two species of brown-colored BChl e-containing ones (C. phaeobacteroides and C. phaeovibrioides) incubated at different light intensities have been studied. All species responded to the reduction of light intensity from 50 to 1 Einstein(E) m–2 s–1 by an increase in the specific content of light harvesting pigments, bacteriochlorophylls and carotenoids. At critical light intensities (0.5 to 0.1 E m–2 s–1) only brown-colored chlorobia were able to grow, though at low specific rates (0.002 days–1 mg prot–1). High variations in the relative content of farnesyl-bacteriochlorophyll homologues were found, in particular BChl e 1 and BChl e 4, which were tentatively identified as [M, E] and [I, E] BChlF e, respectively. The former was almost completely lost upon reduction of light intensity from 50 to 0.1 E m–2 s–1, whereas the latter increased from 7.2 to 38.4% and from 13.6 to 42.0% in C. phaeobacteroides and C. phaeovibrioides, respectively. This increase in the content of highly alkylated pigment molecules inside the chlorosomes of brown species is interpreted as a physiological mechanism to improve the efficiency of energy transfer towards the reaction center. This study provides some clues for understanding the physiological basis of the adaptation of brown species to extremely low light intensities.Abbreviations BChl bacteriochlorophyll - [M, E] BChlF e 8-methyl, 12-ethyl BChl e, esterified with farnesol (F). Analogously: I - isobutyl - Pr propyl - Car carotenoids - Chlb chlorobactene - HPLC high performance liquid chromatography - Isr isorenieratene - LHP light harvesting pigments - PDA photodiode array detector - RC reaction center - RCH relative content of homologues  相似文献   

7.
We have shown that the green sulfur bacterium Chlorobium tepidum can be grown in batch culture supplemented with potentially toxic fatty alcohols without a major effect on the growth rate if the concentration of the alcohols is kept low either by programmed addition or by adding the alcohol as an inclusion complex with -cyclodextrin. HPLC and GC analysis of pigment extracts from the supplemented cells showed that the fatty alcohols were incorporated into bacteriochlorophyll c as the esterifying alcohol. It was possible to change up to 43% of the naturally occurring farnesyl ester of bacteriochlorophyll c with the added alcohol. This change in the homolog composition had no effect on the spectral properties of the cells when farnesol was partially replaced by stearol, phytol or geranylgeraniol. However, with dodecanol we obtained a blue-shift of 6 nm of the Qy band of the bacteriochlorophyll c and a concomitant change in the fluorescence emission was observed. The possible significance of these findings is discussed in the light of current ideas about bacteriochlorophyll organization in the chlorosomes.Abbreviations -CD -cyclodextrin - BChl bacteriochlorophyll - BChl c H bacteriochlorophyllide c - [E,M] BChl c F 8-ethyl, 12-methyl, farnesyl BChl c - [E,E] BChl c F 8-ethyl, 12-ethyl, farnesyl BChl c - [P,E] BChl c F 8-propyl, 12-ethyl, farnesyl BChl c - [I,E] BChl c F 8-isobutyl, 12-ethyl, farnesyl BChl c - Car carotenoids  相似文献   

8.
Exciton calculations on tubular pigment aggregates similar to recently proposed models for BChl c/d/e antennae in light-harvesting chlorosomes from green photosynthetic bacteria yield electronic absorption spectra that are super-impositions of linear J-aggregate spectra. While the electronic spectroscopy of such antennae differs considerably from that of linear J-aggregates, tubular exciton models (which may be viewed as cross-coupled J-aggregates) may be constructed to yield spectra that resemble that of the BChl c antenna in the green bacterium Chloroflexus aurantiacus. Highly symmetric tubular models yield absorption spectra with dipole strength distributions essentially identical to that of a J-aggregate; strong symmetry-breaking is needed to simulate the absorption spectrum of the BChl c antenna.Abbreviations BChl bacteriochlorophyll - [E,M] BChl c S bacteriochlorophyll c with ethyl and methyl substituents in the 8- and 12-positions, and with stearol as the esterifying alcohol  相似文献   

9.
Detailed APCI LC-MS/MS analysis using an improved HPLC separation reveals the green sulphur bacterium Chlorobium phaeobacteroides strain UdG6053 to contain a wider range of distinct bacteriochlorophyll homologues than has been previously recognised in Chlorobiaceae. The diversity in the homologue distribution is confirmed as arising from differences in the extent of alkylation of the macrocycle and variation in the nature of the esterifying alcohol and a novel series of bacteriochlorophyll structures has been recognised. Homologues containing esterifying alcohols other than farnesol, a number of which have not previously been reported in Chlorobiaceae, are present in high relative abundance. Confirmation of the structures of the esterifying alcohols has been obtained by hydrolysis and analysis by GC-MS. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
A new bacteriochlorophyll from brown-colored chlorobiaceae   总被引:4,自引:0,他引:4  
A new bacteriochlorophyll has been isolated by thin layer chromatography from all strains of the brown-colored Chlorobiaceae Chlorobium phaeobacteroides and Chlorobium phaeovibrioides. The new bacteriochlorophyll e —like the bacteriochlorophylls c and d—represents the major amount of bacteriochlorophyll in the cells in addition to small amounts of bacteriochlorophyll a. Bacteriochlorophyll e can be differentiated from the bacteriochlorophylls c and d by its absorption maxima in aceton and its different R f -value in the thin layer chromatogram. The structure of the new bacteriochlorophyll e has been elucidated on the basis of mass spectra, 1H- and 13C-NMR-spectra, the UV/VIS-spectrum as well as IR-, ORD-, and CD-spectra. The new bacteriochlorophyll has the same relationship to bacteriochlorophyll c as chlorophyll b from green plants to chlorophyll a; therefore, bacteriochlorophyll e represents the first formyl-substituted chlorophyll from bacteria. Similar to the bacteriochlorophylls c and d, the new bacteriochlorophyll e consists of a mixture of at least three homologues which differ from each other by different substituents on the pyrrol rings II and III.Abbreviations Used DSM Deutsche Sammlung von Mikroorganismen, Göttingen - Bchl. bacteriochlorophyll - Bph. bacteriopheophytin - P phytol - Gg geranylgeraniol - F farnesol - C Chlorobium This work was made possible by the technology program of the Bundesministerium für Forschung und Technologie.  相似文献   

11.
Fluorescence lifetimes have been measured for bacteriochlorophyll (BChl) c isolated from Chlorobium limicola in different states of aggregation in non-polar solvents. Two different homologs of BChl c were used, one with an isobutyl group at the 4 position, the other with n-propyl. Species previously identified as dimers (Olson and Pedersen 1990, Photosynth Res, this issue) decayed with lifetimes of 0.64 ns for the isobutyl homolog, 0.71 ns for n-propyl. Decay-associated spectra indicate that the absorption spectrum of the isobutyl dimer is slightly red-shifted from that of the n-propyl dimer. Aggregates absorbing maximally at 710 nm fluoresced with a principal lifetime of 3.1 ns, independent of the homolog used. In CCl4, only the isobutyl homolog forms a 747-nm absorbing oligomer spectrally similar to BChl c in vivo. This oligomer shows non-exponential fluorescence decay with lifetimes of 67 and 19 ps. Because the two components show different excitation spectra, the higher oligomer is probably a mixture of more than one species, both of which absorb at 747 nm.Abbreviations BChl bacteriochlorophyll - Chl chlorophyll - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Xdm2aaW% baaSqabeaacaaIYaaaaaaa!3777!\[\chi ^2 \] chi-square - FWHM full-width at half-maximum  相似文献   

12.
The role of carotenoids in chlorosomes of the green sulfur bacterium Chlorobium phaeobacteroides, containing bacteriochlorophyll (BChl) e and the carotenoid (Car) isorenieratene as main pigments, was studied by steady-state fluorescence excitation, picosecond single-photon timing and femtosecond transient absorption (TA) spectroscopy. In order to obtain information about energy transfer from Cars in this photosynthetic light-harvesting antenna with high spectral overlap between Cars and BChls, Car-depleted chlorosomes, obtained by inhibition of Car biosynthesis by 2-hydroxybiphenyl, were employed in a comparative study with control chlorosomes. Excitation spectra measured at room temperature give an efficiency of 60–70% for the excitation energy transfer from Cars to BChls in control chlorosomes. Femtosecond TA measurements enabled an identification of the excited state absorption band of Cars and the lifetime of their S1 state was determined to be 10 ps. Based on this lifetime, we concluded that the involvement of this state in energy transfer is unlikely. Furthermore, evidence was obtained for the presence of an ultrafast (>100 fs) energy transfer process from the S2 state of Cars to BChls in control chlorosomes. Using two time-resolved techniques, we further found that the absence of Cars leads to overall slower decay kinetics probed within the Qy band of BChl e aggregates, and that two time constants are generally required to describe energy transfer from aggregated BChl e to baseplate BChl a.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

13.
Both photogeneration and quenching of singlet oxygen by monomeric and aggregated (dimeric and oligomeric) molecules of bacteriochlorophyll (BChl) d have been studied in solution and in chlorosomes isolated from the green photosynthetic bacterium Chlorobium vibrioforme f. thiosulfatophilum. The yield of singlet-oxygen photogeneration by pigment dimers was about 6 times less than for monomers. Singlet oxygen formation was not observed in oligomer-containing solutions or in chlorosomes. To estimate the efficiency of singlet oxygen quenching an effective rate constant for 1O2 quenching by BChl molecules (kq M) was determined using the Stern-Volmer equation and the total concentration of BChl d in the samples. In solutions containing only monomeric BChl, the kq M values coincide with the real values for 1O2 quenching rate constants by BChl molecules. Aggregation weakly influenced the kq M values in pigment solutions. In chlorosomes (which contain both BChl and carotenoids) the kq M value was less than in solutions of BChl alone and much less than in acetone extracts from chlorosomes. Thus 1O2 quenching by BChl and carotenoids is much less efficient in chlorosomes than in solution and is likely caused primarily by BChl molecules which are close to the surface of the large chlorosome particles. The data allow a general conclusion that monomeric and dimeric chlorophyll molecules are the most likely sources of 1O2 formation in photosynthetic systems and excitation energy trapping by the long wavelength aggregates as well as 1O2 physical quenching by monomeric and aggregated chlorophyll can be considered as parts of the protective system against singlet oxygen formation.Abbreviations BChl bacteriochlorophyll - MBpd methyl bacteriopheophorbide - Chl chlorophyll - TPP meso-tetraphenylporphyrin - TPPS meso-tetra (p-sulfophenyl) porphyrin  相似文献   

14.
The primary electron acceptor of green sulfur bacteria, bacteriochlorophyll (BChl) 663, was isolated at high purity by an improved purification procedure from a crude reaction center complex, and the molecular structure was determined by fast atom bombardment mass spectroscopy (FAB-mass), 1H- and 13C-NMR spectrometry, double quantum filtered correlation spectroscopy (DQF-COSY), heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple-bond correlation (HMBC) spectral measurements. BChl 663 was 2.0 mass units smaller than plant Chl a. The NMR spectra showed that the macrocycle was identical to that of Chl a. In the esterifying alcohol, a singlet P71 signal was observed at the high-field side of the singlet P31 signal in BChl 663, while a doublet peak of P71 overlapped that of P111 in Chl a. A signal of P7-proton, seen in Chl a, was lacking, and the P6-proton appeared as a triplet signal near the triplet P2-proton signal in BChl 663. These results indicate the presence in BChl 663 of a C=C double bond between P6 and P7 in addition to that between P2 and P3. The structure of BChl 663 was hence concluded to be Chl a esterified with 2,6-phytadienol instead of phytol. In addition to BChl 663, two molecules of the 132-epimer of BChl a, BChl a′, were found to be present per reaction center, which may constitute the primary electron donor. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Chlorosome-depleted membranes and a reaction center complex with well-defined subunit composition were prepared from the green sulfur bacterium Chlorobium vibrioforme under anaerobic conditions. The reaction center complex contains a 15-kDa polypeptide with the N-terminal amino acid sequence MEPQLSRPETASNQVR/. This sequence is nearly identical to the N-terminus of the pscD gene product from Chlorobium limicola (Hager-Braun et al. (1995) Biochemistry 34: 9617–9624). In the presence of ferredoxin and ferredoxin:NADP+ oxidoreductase, the membranes and the isolated reaction center complex photoreduced NADP+ at rates of 333 and 110 mol (mg bacteriochlorophyll a)–1 h–1, respectively. This shows that the isolated reaction center complex contains all the components essential for steady state electron transport. Midpoint potentials at pH 7.0 of 160 mV for cytochrome c 551 and of 245 mV for P840 were determined by redox titration. Antibodies against cytochrome c 551 inhibit NADP+ reduction while antibodies against the bacteriochlorophyll a-binding Fenna-Matthews-Olson protein do not.Abbreviations FMO protein Fenna-Matthews-Olson protein - TMBZ 3,3,5,5-tetramethylbenzidine  相似文献   

16.
Green sulfur photosynthetic bacteria Chlorobium (Chl.) vibrioforme (DSM 263 strain and NCIB 8327 substrain possessing BChl-c) and Chl. tepidum (ATCC 49652) were photoautotrophically grown in liquid cultures containing different concentrations of sodium sulfide (Na2S). BChl-c homologs possessing a methyl group at the 12-position tended to increase in cells of the two strains of Chl. vibrioforme cultured under high Na2S concentrations. In contrast, the Na2S concentration in liquid cultures did not affect the relative composition of BChl-c homologs in Chl. tepidum. 8-Propyl-12-methyl([P,M])-BChl-c homolog, which has been little observed in usual cultivations, could be isolated by reverse-phase high-performance liquid chromatography from the cells of Chl. vibrioforme grown under high Na2S contents. The [P,M]-BChl-c homolog has the R-configuration at the 31-position, which was determined by 1H-NMR analyses.  相似文献   

17.
We have determined the molar extinction coefficient of bacteriochlorophyll (BChl) e, the main light-harvesting pigment from brown-coloured photosynthetic sulfur bacteria. The extinction coefficient was determined using pure [Pr,E]BChl eF isolated by reversed-phase HPLC from crude pigment extracts of Chlorobium (Chl.) phaeobacteroides strain CL1401. The extinction coefficients at the Soret and Qy bands were determined in four organic solvents. The extinction coefficient of BChl e differs from those of other related Chlorobium chlorophylls (BChl c and BChl d) but is similar to that of chlorophyll b. The determined extinction coefficient was used to calculate the stoichiometric BChl e to BChl a and BChl e to carotenoids ratios in whole cells and isolated chlorosomes from Chl. phaeobacteroides strain CL1401 using the spectrum-reconstruction method (SRCM) described by Naqvi et al. (1997) (Spectrochim Acta A Mol Biomol Spectrosc 53: 2229–2234) . In isolated chlorosomes, BChl a content was ca. 1% of the total BChl content and the stoichiometric ratio of BChl e to carotenoids was 6. In whole cells, however, BChl a content was 3–4%, owing to the presence of BChl a-containing elements, i.e. FMO protein and reaction centre. An average of 5 BChl e molecules per carotenoid was determined in whole cells.  相似文献   

18.
Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria (Chloroflexales), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.  相似文献   

19.
Highly efficient and reproducible transformation ofChlorobium vibrioforme with plasmid DNA has been achieved by electroporation. Specific parameters have been optimized for the electrotransformation procedure. The method was developed using a construct containing a full copy of thepscC gene encoding the cytochromec 551 subunit of the photosynthetic reaction center complex and theaadA gene encoding streptomycin resistance as selectable marker. Southern blotting analysis showed that the tested colonies were true transformants with the plasmid integrated into the genome by single homologous recombination. No transformants were obtained using the vector without thepscC gene showing that this vector does not replicate inC. vibrioforme. Thus transformation is possible only by homologous recombination. When using constructs designed to inactivate thepscC gene by insertion no transformants were obtained, indicating that the gene is indispensable for growth. The vector pVS2 carrying genes for erythromycin and chloramphenicol resistance was shown to replicate inC. vibrioforme. The two transformations shown here, provide an important genetical tool in the further analysis of structure and function of the photosynthetic apparatus in green sulfur bacteria.  相似文献   

20.
The cell wall lipopolysaccharide of the green sulfur bacterium Chlorobium vibrioforme f. thiosulfatophilum was obtained by the phenol-chloroform-petroleum ether and the hot phenol-water methods, respectively. It contained mannose, glucose, galacturonic acid, glucosamine, glycine, and small amounts of rhamnose, galactose and glucuronic acid. In addition to d-glycero-d-mannoheptose, the corespecific constituents 2-keto-3-deoxyoctonate and l-glycero-d-mannoheptose were found. Polyacrylamide gel-electrophoresis in the presence of sodium deoxycholate gave no indication for the presence of O-specific repeating units. Degradation of the lipopolysaccharide required 10% acetic acid (100° C, 2 h). The lipid A moiety contained the total of glucosamine of the lipopolysaccharide as well as small amounts of 2,3-diamino-2,3-dideoxy-glucose. It was phosphate-free. The fatty acid spectrum comprised 3-OH-14:0, 3-OH-16:0, and iso-3-OH-18:0 besides little 12:0, 14:0 and 16:0. Hydroxylaminolysis and sodium methylate treatment revealed all of the three hydroxy fatty acids to be amidebound.Abbreviations DOC sodium deoxycholate - PAGE polyacrylamide gel-electrophoresis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号