首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic characteristics were compared between plants of low altitude (LA) grown at LA (Palampur; 1 300 m) and at high altitude, HA (Kibber; 4 200 m), and plants naturally occurring at different altitudes (Palampur, 1 300 m; Palchan, 2 250 m; and Marhi, 3 250 m). Net photosynthetic rate (P N) was not significantly different between altitudes. However, the slopes of the curve relating P N to intercellular CO2 concentration (C i) were higher in plants at Palchan, Marhi, and Kibber compared to those at Palampur, indicating that plants had higher efficiency of carbon uptake (the initial slope of P N/C i curve is an indication) at HA. They had also higher stomatal conductance (g s), transpiration rate, and lower water use efficiency at HA. g s was insensitive to photosynthetic photon flux density (PPFD) for plants naturally occurring at Palampur, Palchan, and Marhi, whereas plants from LA grown at Palampur and Kibber responded linearly to increasing PPFD. Insensitivity of g s to PPFD could be one of the adaptive features allowing wider altitudinal distribution of the plants.This research is supported by the Department of Biotechnology (DBT), Government of India vide grant number BT/PR/502/AGR/08/39/966-VI.  相似文献   

2.
Photosynthetic and growth characteristics of Mosla chinensis and M. scabra were compared at three irradiances similar to shaded forest understory, forest edge, and open land. At 25 % full ambient irradiance, M. chinensis and M. scabra had similar photosynthetic characteristics, but saturation irradiance, compensation irradiance, and apparent quantum yield of M. chinensis were higher than those of M. scabra at full ambient irradiance and 70 % full ambient irradiance. At the same irradiance treatment, specific leaf area and leaf area ratio of M. chinensis were lower than those of M. scabra. Photon-saturated photosynthetic rate and water use efficiency of M. chinensis, however, were not significantly higher than those of M. scabra, and the leaf area and total biomass were lower than those of M. scabra. As a sun-acclimated plant, the not enough high photosynthetic capacity and lower biomass accumulation may cause that M. chinensis has weak capability to extend its population and hence be concomitant in the community.  相似文献   

3.
Two-month-old seedlings of Sophora davidii were subjected to a randomized complete block design with three water (80, 40, and 20 % of water field capacity, i.e. FC80, FC40, and FC20) and three N supply [N0: 0, Nl: 92 and Nh: 184 mg(N) kg−1(soil)] regimes. Water stress produced decreased leaf area (LA) and photosynthetic pigment contents, inhibited photosynthetic efficiency, and induced photodamage in photosystem 2 (PS2), but increased specific leaf area (SLA). The decreased net photosynthetic rate (P N) under medium water stress (FC40) compared to control (FC80) might result from stomatal limitations, but the decreased P N under severe water deficit (FC20) might be attributed to non-stomatal limitations. On the other hand, N supply could improve photosynthetic capacity by increasing LA and photosynthetic pigment contents, and enhancing photosynthetic efficiency under water deficit. Moreover, N supply did a little in alleviating photodamages to PS2 caused by water stress. Hence water stress was the primary limitation in photosynthetic processes of S. davidii seedlings, while the photosynthetic characters of seedlings exhibited positive responses to N supply. Appropriate N supply is recommended to improve photosynthetic efficiency and alleviate photodamage under water stress.  相似文献   

4.
The responses of tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under constitutive or senescence-inducible promoter (35S:ZOG1 and SAG12:ZOG1) and of wild type (WT) plants to water stress and subsequent rehydration were compared. In plants sufficiently supplied with water, both transgenics have higher net photosynthetic rate (PN) in upper and middle leaves and higher stomatal conductance (gs) in middle leaves than WT. Water use efficiency (WUE = PN/E) was higher in both transgenics than in WT. During prolonged water stress, both PN and E declined to a similar extent in both transgenics and WT plants. However, 7 d after rehydration PN in SAG:ZOG (upper and middle leaves) and 35S:ZOG (upper leaves) was higher than that in WT plants. Increased content of endogenous CKs in 35S:ZOG plants did not prevent their response to ABA application and the results obtained did not support concept of CK antagonism of ABA-induced stomatal closure. The chlorophyll (Chl) a+b content was mostly higher in both transgenics than in WT. During water stress and subsequent rehydration it remained unchanged in upper leaves, decreased slightly in middle leaves only of WT, while rapidly in lower leaves. Total degradation of Chl, carotenoids and xanthophyll cycle pigments (XCP) was found under severe water stress in lower leaves. Carotenoid and XCP contents in middle and upper leaves mostly increased during development of water stress and decreased after rehydration. While β-carotene content was mostly higher in WT, neoxanthin content was higher in transgenics especially in 35S:ZOG under severe stress and after rehydration. The higher content of XCP and degree of their deepoxidation were usually found in upper and middle leaves than in lower leaves with exception of SAG:ZOG plants during mild water stress.  相似文献   

5.
Diurnal and seasonal trends in net photosynthetic rate (P N), stomatal conductance (g), transpiration rate (E), vapour pressure deficit, temperature, photosynthetic photon flux density, and water use efficiency (WUE) were compared in a two-year-old Dalbergia sissoo and Hardwickia binata plantation. Mean daily maximum P N in D. sissoo ranged from 21.40±2.60 μmol m−2 s−1 in rainy season I to 13.21±2.64 μmol m−2 s−1 in summer whereas in H. binata it was 20.04±1.20 μmol m−2 s−1 in summer and 13.64±0.16 μmol m−2 s−1 in winter. There was a linear relationship between daily maximum P N and g s in D. sissoo but there was no strong linear relationship between P N and g s in H. binata. In D. sissoo, the reduction in g s led to a reduction in both P N and E enabling the maintenance of WUE during dry season thereby managing unfavourable environmental conditions efficiently whereas in H. binata, an increase in g s causes an increase of P N and E with a significant moderate WUE.  相似文献   

6.
Morphology, biomass accumulation and allocation, gas exchange, and chlorophyll fluorescence were compared for one-year-old seedlings of Salix psammophila and Artemisia ordosica, two dominant desert species, in response to two water supplies (equivalent to 315.0 mm for present precipitation in growing season and to 157.5 mm for future decreasing precipitation) during 105 d. For both species, photochemical efficiency of photosystem 2 (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance, biomass accumulation in different organs, tree height, number of leaves, and leaf area were reduced in response to the decrease in water supply. For both species, instantaneous water use efficiency was not affected by the water deficit. However, diurnal patterns of gas exchange and biomass allocation were affected in different ways for the two species, with notably a decrease in specific leaf area and an increase in root : shoot ratio for S. psammophila only. Overall, S. psammophila was more responsive to the decreasing precipitation than A. ordosica.  相似文献   

7.
Thirty-day-old plants of two okra cultivars, Sabzpari and Chinese-red, were subjected for 30 d to normal watering or continuous flooding. Continuous flooding did not cause any adverse effect on shoot fresh and dry biomass. Leaf water potential and pressure potential of both cultivars increased significantly due to waterlogging, but there was a slight increase in leaf osmotic potential. Chlorophyll a and b contents decreased significantly and chlorophyll a/b ratio increased. Waterlogging caused a significant reduction in net photosynthetic rate, water use efficiency and intrinsic water use efficiency, but stomatal conductance and intercellular CO2/ambient CO2 ratio remained unchanged.  相似文献   

8.
Optical characteristics, contents of photosynthetic pigments, total soluble sugars, and starch, rates of gas exchange, chlorophyll (Chl) a fluorescence, and leaf water relations were analysed in three Vitis vinifera L. cultivars, Tinto Cão (TC), Touriga Nacional (TN), and Tinta Roriz (TR), grown in Mediterranean climate. Chl content was significantly lower in TC than in TN and TR leaves, while the Chl a/b ratio was higher. TR had the lowest net photosynthetic rate, stomatal conductance, and contents of soluble sugars and starch than TN and TC. In spite of low Chl content, TC showed the lowest photon absorbance and the highest photochemical efficiency of photosystem 2. TC had the lowest predawn and midday leaf water potential. The capability for osmotic adjustment was similar among cultivars and the calculated modulus of elasticity was higher in TC leaves. The typical lighter green leaves of TC seemed to be an adaptive strategy to high irradiance and air temperature associated to water stress.  相似文献   

9.
10.
Stem discs from trees of known age were used to determine the periodic nature of the growth rings formed in Laguncularia racemosa and to describe the anatomical features of these rings. The growth rings were scarcely distinct on microscopic examination, but they were well distinguishable macroscopically, with alternating light brown and dark brown layers. Cross-dating analysis revealed the occurrence of annual growth rings in L. racemosa. The existence of annual growth rings in L. racemosa suggests that it may have great potential for dendrochronology and should encourage age-related studies on the dynamics of mangrove forests. These studies can be important for the evaluation of climate change impact on mangrove ecosystems, as well as for the analysis of effects related to climate variability on plant communities.  相似文献   

11.
We investigated the strategies of four co-occurring evergreen woody species Quercus ilex, Quercus coccifera, Pinus halepensis, and Juniperus phoenicea to cope with Mediterranean field conditions. For that purpose, stem water potential, gas exchange, chlorophyll (Chl) fluorescence, and Chl and carotenoid (Car) contents were examined. We recognized two stress periods along the year, winter with low precipitation and low temperatures that led to chronic photoinhibition, and summer, when drought coincided with high radiation, leading to an increase of dynamic photoinhibition and a decrease of pigment content. Summer photoprotection was related to non-photochemical energy dissipation, electron flow to alternative sinks other than photosynthesis, decrease of Chl content, and proportional increase of Car content. Water potential of trees with deep vertical roots (Q. coccifera, Q. ilex, and P. halepensis) mainly depended on precipitation, whereas water potential of trees with shallow roots (J. phoenicea) depended not only on precipitation but also on ambient temperature.  相似文献   

12.
A greenhouse experiment was conducted to investigate the effects of silicon application on Phaseolus vulgaris L. under two levels of salt stress (30 and 60 mM NaCl in the irrigation water). Salinity significantly reduced growth, stomatal conductance and net photosynthetic rate, and increased Na+ and Cl content mainly in roots. Silicon application enhanced growth of salt stressed plants, significantly reduced Na+ content especially in leaves and counterbalanced the effects of NaCl on gas exchange; the effect was more evident at 30 mM NaCl. Cl content in shoots and roots was not significantly modified by silicon application; the drop in K+ content caused by salinity was partially counterbalanced by silicon, especially in roots.  相似文献   

13.
Saturation (SI) and compensation (CI) irradiances [μmol(photon) m−2 s−1] were 383.00±18.40 and 12.95±0.42 for wild C. nitidissima (in mid-July) and 691.00±47.39 and 21.91±1.28 for wild C. sinensis, respectively. C. nitidissima is a shade tolerant species, whereas C. sinensis has a wide ecological range of adaptability to irradiance. Both wild and cultivated C. nitidissima demonstrated low maximum net photosynthetic rate, maximum carboxylation rate, maximum electron transfer rate, and SI, which indicated low photosynthesis ability of leaves that were unable to adapt to strong irradiance environment. Both C. nitidissima and C. sinensis demonstrated strong photosynthetic adaptabilty in new environments. Hence proper shading may raise photosynthetic efficiency of cultivated C. nitidissima and promote its growth.  相似文献   

14.
The epiphytic fern Platycerium bifurcatum grows in different habitats characterized by drought and high irradiance stress. The plant shows diurnal malate oscillations, indicative for CAM expression only in cover leaves, but not in sporotrophophyll. In P. bifurcatum cover leaves exposed to high irradiance and desiccation, the decrease in both CO2 assimilation (P N) and stomatal conductance (g s) was accompanied with occurrence of diurnal malate oscillations. Exogenously applied abscisic acid (ABA) induced the decrease in P N and g s, but no clear change in malate oscillations. The measurements of the maximum quantum efficiency of photosystem 2 (Fv/Fm) under high irradiance showed distinct photoinhibition, but no clear changes in Fv/Fm due to desiccation and ABA-treatment were found.  相似文献   

15.
The effect of arbuscular mycorrhizal fungi (AMF) inoculation and organic slow release fertilizer (OSRF) on photosynthesis, root phosphatase activity, nutrient acquisition, and growth of Ipomoea carnea N. von Jacquin ssp. fistulosa (K. Von Martinus ex J. Choisy) D. Austin (bush morning glory) was determined in a greenhouse study. The AMF treatments consisted of a commercial isolate of Glomus intraradices and a non-colonized (NonAMF) control. The OSRF was applied at 10, 30, and 100 % of the manufacturer’s recommended rate. AMF plants had a higher net photosynthetic rate (P N), higher leaf elemental N, P, and K, and generally greater growth than NonAMF plants. Total colonization levels of AMF plants ranged from 27 % (100 % OSRF) to 79 % (30 % OSRF). Root acid phosphatase (ACP) and alkaline phosphatase (ALP) activities were generally higher in AMF than non-AMF plants. When compared to NonAMF at 100 % OSRF, AMF plants at 30 % OSRF had higher or comparable ACP and ALP activity, higher leaf elemental P, N, Fe, Cu, and Zn, and a greater P N (at the end of the experiment), leading to generally greater growth parameters with the lower fertility in AMF plants. We suggest that AMF increased nutrient acquisition from an organic fertilizer source by enhancing ACP and ALP activity thus facilitating P acquisition, increasing photosynthesis, and improving plant growth.  相似文献   

16.
The effect of elevated carbon dioxide (600±50 cm3 m−3; C600) on growth performance, biomass production, and photosynthesis of Cenchrus ciliaris L. cv. 3108 was studied. This crop responded significantly by plant height, leaf length and width, and biomass production under C600. Leaf area index increased triple fold in the crops grown in the open top chamber with C600. The biomass production in term of fresh and dry biomass accumulation increased by 134.35 (fresh) and 193.34 (dry) % over the control (C360) condition where the crops were grown for 20 d. The rate of photosynthesis and stomatal conductance increased by 24.51 and 46.33 %, respectively, in C600 over C360 plants. In comparison with C360, the rate of transpiration decreased by 6.8 % under C600. Long-term exposure (120 d) to C600 enhanced photosynthetic water use efficiency by 34 %. Also the contents of chlorophylls a and b significantly increased in C600. Thus C. ciliaris grown in C600 throughout the crop season may produce more fodder in terms of green biomass.  相似文献   

17.
Abstact  Twelve randomly chosen Stipa tenacissima L. individuals were grouped into three tussock size classes, small (ST), medium (MT), and large (LT) with 5.6±0.8, 34.1±4.2, and 631.9±85.8 g of dry green foliar matter, respectively, in three plots with different S. tenacissima cover. Instantaneous (WUEi) and long-term (WUEl) water-use efficiencies were measured in two seasons of contrasting volumetric soil water content (early winter 21.0±0.8 % and summer 5.8±0.3 %). Maximum photochemical efficiency of photosystem 2 and stomatal conductance in summer assessed the extent of water and irradiance stress in tussocks of different size. WUEi was lower in MT and ST “water spender” strategies than in LT during the high water-availability season. In summer net photosynthetic rate and WUEi were higher and photoinhibition was lower in LT than in MT and ST. Significant spatial variability was found in WUEi. Water uptake was competitive in stands with denser alpha grass and more water availability in summer, reducing their WUEi. However, WUEl showed a rising tendency when water became scarce. Thus it is important to explicitly account for plant size in ecophysiological studies, which must be combined with demographic information when estimating functional processes at stand level in sequential scaling procedures.  相似文献   

18.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

19.
Summary Lilium Asiatic hybrid ‘Mona’ bulblets were cultured in vitro for 100 d under photoautotrophic (CO2-enriched conditions and without sucrose in the medium) and heterotrophic (non-enriched CO2 conditions and sucrose-supplemented medium) methods and under various levels of photosynthetic photon flux (PPF). Bulblet growth and net photosynthetic rate (NPR) were analyzed. CO2− and PPF-enriched conditions enhanced the overall growth of bulblets, scale leaves, and roots. Heterotrophic conditions enhanced bulblet growth but higher PPF levels were inhibitory to the development of scale leaves. These results indicate the CO2− and PPF-enriched conditions (photoautotrophic conditions) are beneficial for the production of high-quality bulblets of Asiatic hybrid lilies in vitro  相似文献   

20.
Increased incidence of leaf spots on many tree species, up to the presence of peripheral importance only, including linden trees was noticed recently. First massive and continuous occurence of the fungus Cercospora microsora Sacc. [teleomorph Mycosphaerella millegrana (Cook.) Schröet., Mycosphaerella microsora Syd.], causal agent of anthracnose on linden trees (Tilia cordata Mill.) grown in urban plantings in Slovakia was reported. Along with this, certain of the important growth characteristics of this fungus were studied under laboratory conditions. To specify Cercospora biology mycelial growth of C. microsora in pure hyphal cultures was observed in relation to medium and locality. One-way ANOVA has confirmed a statistically significant influence of both factors, culture medium and locality on growth rate values of C. microsora. The effect of these factors has not proved unambiguously in all cases. In the case of one locality (Nitra), the significant influence of used media has not been proved (P > 0.05). PDAg showed generally as the most suitable medium, inducing the most intensive growth in three localities (41.06 mm/week on average). Comparing three localities, the effect of this factor is not so unambiguous. Growth rate values from the localities Bratislava and Pribeta indicate unsuitability of medium A for the fast radial growth. A Tukey test separately conducted for the factors medium and the locality revealed the significant combinations of means (P ≤ 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号