首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthesis in the perfused liver of the starved rat   总被引:1,自引:18,他引:1  
1. In the isolated perfused liver from 48h-starved rats, glycogen synthesis was followed by sequential sampling of the two major lobes. 2. The fastest observed rates of glycogen deposition (0.68–0.82μmol of glucose/min per g fresh liver) were obtained in the left lateral lobe, when glucose in the medium was 25–30mm and when gluconeogenic substrates were present (pyruvate, glycerol and serine: each initially 5mm). In this situation there was no net disappearance of glucose from the perfusion medium, although 14C from [U-14C]glucose was incorporated into glycogen. There was no requirement for added hormones. 3. In the absence of gluconeogenic precursors, glycogen synthesis from glucose (30mm) was 0–0.4μmol/min per g. 4. When livers were perfused with gluconeogenic precursors alone, no glycogen was deposited. The total amount of glucose formed was similar to the amount converted into glycogen when 30mm-glucose was also present. 5. The time-course, maximal rates and glucose dependence of hepatic glycogen deposition in the perfused liver resembled those found in vivo in 48h-starved rats, during infusion of glucose. 6. In the perfused liver, added insulin or sodium oleate did not significantly affect glycogen synthesis in optimum conditions. In suboptimum conditions (i.e. glucose less than 25mm, or with gluconeogenic precursors absent) insulin caused a moderate acceleration of glycogen deposition. 7. These results suggest that on re-feeding after starvation in the rat, hepatic glycogen deposition could be initially the result of continued gluconeogenesis, even after the ingestion of glucose. This conclusion is discussed, particularly in connexion with the role of hepatic glucokinase, and the involvement of the liver in the glucose intolerance of starvation.  相似文献   

2.
An oral gavage of either 3, 1 or 0.1 mmoles of glucose was given to rats under standard feeding conditions or food deprived for 24 hr. The blood flow of the portal and suprahepatic veins as well as the hepatic balances for glucose, lactate, alanine and pyruvate were estimated.In fed rats, after the administration of an oral 3 mmoles load, the liver actually released 310 µmoles of glucose and 90 of lactate, amounts that could be accounted for by the uptake of alanine (148 µmoles) and small loss of glycogen (275 µmoles of glycosyl residues). In starved rats, however, the liver took a very high proportion (c. 71%) of the glucose absorbed, both as glucose (780 µmoles), lactate and pyruvate (892 µmoles) or alanine (134 µmoles). The synthesis of glycogen was considerably limited, accounting for only 205 µmoles, and leaving practically one mmol of glucose equivalent energy available for liver function and the synthesis of other compounds. Practically all glycogen was synthesized directly from glucose, since the synthesis from 3 C carriers was less than a 5%. Smaller gavages (1 or 0.1 mmoles) resulted in a much lower liver uptake activity.The strikingly different activity of the liver with respect to the available glucose and 3 C fragments could not be explained alone by the circulating levels of these compounds, suggesting a very deep influence of the intestine in hepatic function. The liver plays a very passive role in fed animals, with a very small involvement in the disposal of a glucose load, whereas it takes on an important role when the overall availability of energy is diminished.  相似文献   

3.
This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague–Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 μm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid–Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p < 0.05). Groups 1 and 2 had the highest liver glycogen levels. The results obtained from the study indicate that liver glycogen levels which dropped in acute swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.  相似文献   

4.
After a pulse of [3-14C]pyruvate, 24 hr starved rats were infused through the portal vein with two different doses of glucose (7.8 or 20.8 mg/min) or the medium, and blood was collected from the inferior cava vein at the level of the suprahepatic veins. The highest dose of glucose enhanced the appearance of [14C]glucose in blood from the 2nd to the 20th min after tracer delivery. It also enhanced production of [14C]glycogen and concentration of glycogen in the liver after 5 and 20 min. At 20 min of glucose infusion the appearance of [14C]glyceride glycerol in liver as well as liver lactate concentration and lactate/pyruvate ratio were increased. The low dose of glucose used enhanced liver values of [14C]glycogen, [14C]glycogen specific activity and glycogen concentration. Our results support the hypothesis that in the starved rat glucose is converted into C3 units prior to being deposited as liver glycogen and based on the liver zonation model (Jungermann et al., 1983) it is proposed that glucose stimulated gluconeogenesis by shifting the liver to the cytosolic redox state as a secondary consequence of increased glycolytic activity.  相似文献   

5.
Synopsis Small samples of rat liver, weighing 15 mg or less, were either (a) frozen in liquid nitrogen or (b) fixed at 4°C for 5 min to 2 hr in absolute alcohol, alcoholic picric acid (Rossman's fluid), or aqueous picric acid (Bouin's fluid). The tissue samples were analysed for total glycogen content by a modification of the procedure described by Goodet al. (1933).Comparable yields of glycogen were extracted from freshly frozen and fixed tissue samples. The time of fixation had no apparent effect on the amount of glycogen that could be extracted chemically. Dissolved glycogen was not detectable in the fixatives.It is concluded that (a) the fixatives used in this study do not significantly affect the yield of chemically extractable glycogen from liver; (b) fixation is extremely rapid; and (c) alcoholic fixatives are not significantly superior to aqueous picric acid fixatives for preservation of chemically extractable glycogen in very small samples of tissue.  相似文献   

6.
Soluble proteins and glycogen particles, which are easily lost upon conventional chemical fixation, have been reported to be better preserved in paraffin-embedded sections by ‘cryobiopsy’ combined with freeze-substitution fixation (FS). In this study, we examined the distribution of glycogen in living mouse livers under physiologic and pathologic conditions with periodic acid-Schiff (PAS) staining by cryobiopsy. The livers of the fully fed mice showed high PAS-staining intensity in the cytoplasm of all hepatocytes. The PAS-staining intensity gradually decreased away from hepatocytes around portal tracts, depending on treatments with different α-amylase concentrations. At 6 or 12 h after fasting, PAS-staining intensity markedly decreased in restricted areas of zone I near the portal tracts. The cryobiopsy was repeatedly performed not only on different mice, but also on individuals. Next, glycogen distributions were evaluated by temporarily clipping of liver tissues of anesthetized mice, followed by recovery of blood circulation. In the liver tissues in which blood was recirculated for 1 h after the 30 min anoxia, PAS staining was still observed in zone II and also in restricted areas of zone I far from the portal tracts. In PAS-unstained hepatocytes, the immunoglobulin-kappa light chain was not detected in the cytoplasm, indicating that cell membrane permeability was retained and that glycogen metabolism was related to the functional state of blood circulation. We propose that the level of consumption or production of glycogen particles could vary in zone I, depending on the distance from the portal tracts. Thus, cryobiopsy combined with FS enabled us to examine time-dependent changes in glycogen distribution in the liver tissues of living mice. This combination might be applicable to the clinical evaluation of human liver tissues.  相似文献   

7.
Fenugreek and Balanites are two plants commonly used in Egyptian folk medicine as hypoglycemic agents. In the present study, the effects of 21 days oral administration of Fenugreek seed and Balanites fruit extracts (1.5 g/kg bw) on the liver and kidney glycogen content and on some key liver enzymes of carbohydrate metabolism in STZ-diabetic rats were studied. In addition, the effects of these two plant extracts on the intestinal α-amylase activity in vitro and starch digestion and absorption in vivo were also examined. Results indicated that single injection of STZ (50 mg/kg bw) caused 5-folds increase in the blood glucose level, 80% reduction in serum insulin level, 58% decrease in liver glycogen and 7-folds increase in kidney glycogen content as compared to the normal levels. The activity of glucose-6-phosphatase was markedly increased, whereas, the activities of both glucose-6-phosphate dehydrogenase and phospho-fructokinase were significantly decreased in the diabetic rat liver. Administration of Fenugreek extract to STZ-diabetic rats reduced blood glucose level by 58%, restored liver glycogen content and significantly decreased kidney glycogen as well as liver glucose-6-phosphatase activity. Meanwhile, Balanites extract reduced blood glucose level by 24% and significantly decreased liver glucose-6-phosphatase activity in diabetic rats. On the other hand, our results demonstrated that both the Fenugreek and Balanites extracts were able to in vitro inhibit α-amylase activity in dose-dependent manner. Fenugreek was more potent inhibitor than Balanites. This inhibition was reversed by increasing substrate concentration in a pattern which complies well with the effect of competitive inhibitors. Furthermore, this in vitro inhibition was confirmed by in vivo suppression of starch digestion and absorption induced by both plant extracts in normal rats. These findings suggest that the hypoglycemic effect of Fenugreek and Balanites is mediated through insulinomimetic effect as well as inhibition of intestinal α-amylase activity.  相似文献   

8.
By cytofluorometric method, a study was made of the total glycogen and its two fractions in liver parenchymal cells both in the donors (20 men) and in patients with cirrhosis of different etiology (39 men). The examination was performed on preparations--smears of isolated hepatocytes, obtained from the live functional liver biopsies. The quantitative analysis has shown an increase in the total glycogen content in hepatocytes of patients with cirrhosis by 3 times compared to the norm, and this increase is independent on the etiology of liver cirrhosis. To study the mechanism of the discovered glycogenosis, the activity of key enzymes of glycogenolyses was determined. It was shown that glucose-6-phosphatase and glycogen-phosphorylase activity in the liver with cirrhosis was lower than in the norm. The most considerable changes were shown in hepatocytes of patients with liver cirrhosis in fractional glycogen composition and, even more significant, in the content of a hard soluble fraction. The hard soluble fraction portion was higher in hepatocytes of the patients with liver cirrhosis of alcohol etiology. The quantitative analysis of glycogen fraction contents in liver cells may be the best marker in the differential diagnosis of symptomless elapsing liver cirrhosis.  相似文献   

9.
The effect of mouse resistin on hepatic insulin resistance in vivo and in vitro, and its possible molecular mechanism were examined. Focusing on liver glycogen metabolism and gluconeogenesis, which are important parts of glucose metabolism, in primary cultures of rat hepatocytes we found that glycogen content was significantly lower (P < 0.05) after treatment with recombinant murine resistin only in the presence of insulin plus glucose stimulation. Protein levels of factors in the insulin signaling pathway involved in glycogen synthesis were examined by Western blot analysis, with the only significant change observed being the level of phosphorylated (at Ser 9) glycogen synthase kinase-3β (GSK-3β) (P < 0.001). No differences in the protein levels for the insulin receptor β (IRβ), insulin receptor substrates (IRS1 and IRS2), phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) or their phosphorylated forms were observed between control and resistin treated primary rat hepatocytes. In a mouse model with high liver-specific expression of resistin, fasting blood glucose levels and liver glycogen content changed. Fasting blood glucose levels were significantly higher (P < 0.001) in the model mice, compared to the control mice, while the glycogen content of the liver tissue was about 60% of that of the control mice (P < 0.05). The gluconeogenic response was not altered between the experimental and control mice. The level of phosphorylated GSK-3β in the liver tissue was also decreased (P < 0.05) in the model mice, consistent with the results from the primary rat hepatocytes. Our results suggest that resistin reduces the levels of GSK-3β phosphorylated at Ser 9 leading to impaired hepatic insulin action in primary rat hepatocytes and in a mouse model with high liver-specific expression of resistin.  相似文献   

10.
Stress caused by the 'mark-recapture' method to Coregonus albula (L)   总被引:1,自引:0,他引:1  
The aim of this study was to establish if capture and marking caused stress to C. albula , and if a 'mark-recapture' method was suitable for the estimation of a population of C. albula . The blood lactate and glucose levels and the liver and muscle glycogen content were determined during the initial handling and subsequent recovery of the fish in the autumn and spring.
The blood lactate content did not increase to the critical level. Usually the values were distinctly less than 100 mg %, but the blood glucose content increased throughout the whole experiment (24 h) until it reached 250 mg %. The glycogen content in liver and muscle decreased. The liver glycogen of female C. albula was below 0·3 % in autumn, while the values for males were 3–5 %. In spring, the corresponding values were about 0·5 % in both sexes. During handling, the critical period was when the glycogen reserves in the liver became negligible, and female C. albula in autumn had the greatest risk of dying because of their low liver glycogen content.
Spring seemed to be a better season for marking than the autumn. A steady increase in blood glucose indicated there was also stress in spring and the marking time in both seasons should be less than two hours.  相似文献   

11.
Native glycogen was isolated from Tetrahymena pyriformis (HSM) by isopycnic centrifugation in cesium chloride density gradients. A density of 1.62 to 1.65 was isopycnic for glycogen. Most of the banded glycogen existed as 35 to 40 mµ particles which had a sedimentation coefficient of 214. These particles were composed of aggregates of 2 to 3 mµ spherical particles. Extraction of glycogen with hot alkali reduced the sedimentation coefficient of native glycogen from 214 to 64.7 and the particle diameter from approximately 40 to 20 mµ and smaller. Cell division was synchronized by a repetitive 12-hour temperature cycle, and glycogen was measured at several times during the cell cycle. The temperature cycle consisted of 9.5 hours at 12°C and 2.5 hours at 27°C. Approximately 90 per cent of the cells divided during the last 1.5 hours of the warm period. The carbohydrate/protein ratio of cells at the end of the cold period was 0.27 and was reduced slightly during the warm period. Glucose was incorporated into glycogen during both periods, although the rate of incorporation was greater during the warm period. No preferential incorporation on the basis of particle size was noted. Incorporation was measured in both native glycogen and KOH-extracted glycogen. Tetrahymena glycogen is compared with rat liver glycogen previously isolated by similar procedures, and the significance of using combined rate-zonal and isopycnic centrifugation for isolating native glycogen is discussed.  相似文献   

12.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

13.
There are a few of studies examining how selenium, which is known to reduce oxidative damage in exercise, influences glucose metabolism and exhaustion in physical activity. The present study aims to examine how selenium administration affects liver glycogen levels in rats subjected to acute swimming exercise. The study included 32 Sprague–Dawley type male rats, which were equally allocated to four groups: Group 1, general control; Group 2; selenium-supplemented control (6 mg/kg/day sodium selenite); Group 3, swimming control; Group 4, selenium-supplemented swimming (6 mg/kg/day sodium selenite). Liver tissue samples collected from the animals at the end of the study were fixed in 95% ethyl alcohol. From the tissue samples buried into paraffin, 5-μm cross-sections were obtained using a microtome, put on a microscope slide, and stained with PAS. Stained preparations were assessed using a Nikon Eclipse E400 light microscope. All images obtained with the light microscope were transferred to a PC and evaluated using Clemex PE 3.5 image analysis software. The highest liver glycogen levels were found in groups 1 and 2 (p < 0.05). The levels in group 4 were lower than those in groups 1 and 2 but higher than the levels in group 3 (p < 0.05). The lowest liver glycogen levels were obtained in group 3 (p < 0.05). Results of the study indicate that liver glycogen levels that decrease in acute swimming exercise can be restored by selenium administration. It can be argued that physiological doses of selenium administration can contribute to performance.  相似文献   

14.
Summary Glycogen synthetase (uridine diphosphate glucose-glycogen glucosyl transferase) was studied in different organs by a histoautoradiographic method and by usual staining methods. This activity was found to be present in muscles and liver of different animals. Human skin also showed some activity. Human liver and myocardium showed the highest activity.In the present study, it was found that the glucose-6-phosphate dependent form (D-form) of the glycogen synthetase predominates over the glucose-6-phosphate independent form (I-form) in all the organs except hamster liver where the I-form predominates.Addition of calcium chloride in the incubation medium, to prevent phosphorolytic breakdown of the newly synthesized glycogen, does not improve the reaction. No glucose is incorporated into glycogen from 14C-glucose-6-phosphate of the incubation medium for glycogen synthetase. Fixation in absolute alcohol at –20° is recommended for tissues where cytolysis is caused by the incubation medium.  相似文献   

15.
A cytofluorometric study of the total glycogen and its fractions in rat liver cells using the fluorescent PAS reaction was made during 1--7 days of the postnatal development. It was established that glycogen content was small on the first two days of development. The glycogen content increases only on the third day after birth. The glycogen of the rat liver cells during a first week of the postnatal development is different from that detected in adult liver cells in two aspects: in 3 day old hepatocytes soluble and stable glycogen fractions are equal, while in adult rat liver cells the former makes 80--90%; during the first week of the postnatal development, the stable fraction of rat liver cell is more labile, while in the adult rat liver the soluble fraction of glycogen is more labiles.  相似文献   

16.
Adult male Wistar rats allowed food and drinking water ad libitum were kept 2- 5 weeks under standard conditions, but with a different artificial light regimens. The standard regimen was 12:12 h light and dark (LD) and the other variants were 12:12 h dark and light (DL), continuous darkness (DD) and continuous light (LL). The blood glucose level and the liver, skeletal muscle, heart and brown and white adipose tissue glycogen concentration were tested during the day at 3-hour intervals. The experiments were carried out during the winter and were evaluated by an analysis of variance and the cosinor test. Circadian variation of the blood glucose level and the liver and both the adipose tissue glycogen concentrations was only slightly affected by changes in the light regimen. Conversely, the oscillations of the skeletal muscle and heart glycogen concentration reacted markedly to the variants of the light regimen, their reaction being manifested in the localization of the acrophases in different parts of the day, especially when comparing the DD and LD regimens.  相似文献   

17.
Using cytophotometric method, the content of glycogen was studied in hepatocytes of the portal and central zones of a liver lobule in norm, in cirrhosis, and 1, 3, and 6 months after a partial hepatectomy of the normal and cirrhotic rat liver. As we showed earlier, glycogen content in cirrhotic liver hepatocytes rose 2-3-fold, along with obvious impairment of glycogen metabolic heterogeneity in these. In cirrhotic liver glycogen dominates in the central zone, whereas in norm more glycogen is observed in the portal one. The objective of this study was to find out to what degree a partial hepatectomy of cirrhotic liver may promote recovery of the metabolic glycogen heterogeneity in hepatocytes. Glycogen was determined in hepatocytes, using a quantitative variant of PAS-reaction on sections of the material obtained from serial supravital punctate liver biopsies. Glycogen amount in hepatocytes of different liver lobule zones was determined by an image analyzer technique that allows to bring together the cytophotometric analysis of the substance with its localization in a particular liver lobule. Results of these studies have shown that a partial hepatectomy of cirrhotic liver promotes restoration of the hepatocyte metabolic heterogeneity in the liver lobule.  相似文献   

18.
Glycogen synthesis in the perfused liver of adrenalectomized rats.   总被引:5,自引:4,他引:1       下载免费PDF全文
1. A total loss of capacity for net glycogen synthesis was observed in experiments with the perfused liver of starved adrenalectomized rats. 2. This lesion was corrected by insulin or cortisol in vivo (over 2-5h), but not by any agent tested in perfusion. 3. The activity of glycogen synthetase a, and its increase during perfusion, in the presence of glucose plus glucogenic substrates, were proportional to the rate of net glycogen accumulation. 4. This complete inherent loss of capacity for glycogen synthesis after adrenalectomy is greater than any defect in hepatic metabolism yet reported in this situation, and is not explicable by a decrease in the rate of gluconegenesis (which supports glycogen synthesis in the liver of starved rats). The short-term (2-5h) stimulatory effect of glucocorticoids in the intact animal, on hepatic glycogen deposition, may be mediated partly through insulin action, although neither insulin or cortisol appear to act directly on the liver to stimulate glycogen synthesis.  相似文献   

19.
Specimens of sea bass (Dicentrarchus labrax) were exposed to two different cadmium concentrations (0.5 and 5 μg Cd2+/ml seawater) for a period of 7 days. Cadmium accumulated in the tissues of D. labrax in the following order: kidney > liver > gills at both concentrations. Accumulation patterns in fish exposed to 0.5 μg Cd2+/ml seawater were different with respect to 5.0 μg Cd2+/ml seawater. At both Cd concentrations a similar stress situation occurred during the first 4 hr as noted by the depletion of glycogen stores and the increase in free glucose in the muscle; metallothionein was induced in the liver, but failed to bind all the cytosolic Cd, which was in part bound to high-molecular-weight ligands. Fish recovered from this initial stress situation within 24 hr as indicated by the increase in glycogen and the decrease of glucose. Long-term effects were clearly dependent upon metal concentration: at lower Cd exposure, metallothionein induction increased linearly with time and counteracted the toxic effect of the metal; on the other hand, when fish were exposed to 5.0 μg Cd2+/ml seawater a clear stress occurred at the end of the exposure, as indicated by the notable decrease of glycogen stores, the increase of free glucose, the decrease of AEC in the muscle and the increase of Cd bound to high-molecular-weight ligands in the liver.  相似文献   

20.
By cytofluorometry employing the cytofluorometric PAS reaction, a study was made of the total glycogen and of its two fractions in liver parenchymal cells, both in the norm and in patients with chronic alcoholism (alcoholic steatosis, chronic alcoholic hepatitis, and mixed forms of alcoholic-viral hepatitis, viral hepatitis with steatosis and also viral hepatitis). The examination was performed on preparations-smears of isolated hepatocytes, obtained from the live puncture liver biopsies. The quantitative analysis has shown the increase in the total glycogen content in hepatocytes of patients with alcoholic hepatitis in comparison with the norm and with chronic viral hepatitis. The transition from a reverse stage--alcoholic steatosis--to alcoholic hepatitis was accompanied by a sharp increase in the total glycogen content and by an obvious change in the ratio of glycogen fractions, towards the hard soluble fraction in liver cells. The quantitative analysis of glycogen fractions in liver cells of patients with chronic alcoholic disease may be an appreciated marker of differential diagnostics of different stages and forms of alcoholic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号