首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A G Rehm  H Wu  S P Halenda 《FEBS letters》1988,234(2):316-320
The effects of guanine nucleotides on arachidonic acid (AA) release were studied in intact and saponin-permeabilized human platelets. While GTP[S] itself caused a stimulation of AA release in permeabilized cells, GTP[S], GDP[S], GTP, ATP and other nucleotides inhibited AA release in response to thrombin and other agonists in intact, as well as permeabilized platelets. Inhibition of agonist-stimulated AA release by nucleotides was partially attenuated by addition of ADP, and was abolished by prior stimulation of platelets to discharge the ADP-containing dense granules. These results suggest: (i) that released ADP plays an important contributory role in agonist-stimulated platelet AA release, and (ii) that guanine nucleotides can modulate platelet activation through an extracellular action which is distinct from their effects on G-proteins.  相似文献   

2.
Sodium nitroprusside, an activator of the soluble guanylate cyclase, inhibits the intracellular Ca2+ mobilization, ATP secretion and aggregation of human platelets evoked by fluoroaluminate. Similar results are obtained with 8-bromo-cyclic GMP (8-Br-cGMP). Both nitroprusside and 8-Br-cGMP inhibit the protein kinase C-dependent phosphorylation of the 47 and 20 kDa proteins induced by fluoroaluminate, but not by the protein kinase C activators phorbol ester and diacylglycerol. Since fluoroaluminate interacts directly with a G protein, the present results suggest that the cGMP interferes with platelet activation at the level of G protein-phospholipase C.  相似文献   

3.
In a previous study, we have reported that thrombin stimulates phosphatidylcholine hydrolysis by phospholipase (PL) D, but has little effect on phosphoinositide hydrolysis by PLC in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the mechanism of the thrombin-induced arachidonic acid (AA) release in MC3T3-E1 cells. Thrombin stimulated AA release dose dependently in the range between 0.1 and 1 U/ml. Quinacrine, a PLA2 inhibitor, suppressed the thrombin-induced AA release. In addition, quinacrine also suppressed the thrombin-induced prostaglandin E2 synthesis in these cells. On the other hand, propranolol, which is known to inhibit phosphatidic acid phosphohydrolase, did not affect the thrombin-induced AA release. 1(6-((17β-3-Methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-d |ione (U-73122), a PLC inhibitor, had no effect on the AA release by thrombin. In addition, 1,6-bis-(cyclohexyloximinocarbonylamino)-hexane (RHC-80267), a selective inhibitor of diacylglycerol lipase, had little effect on the thrombin-induced AA release. Neither propranolol, U-73122 nor RHC-80267 affect the thrombin-induced prostaglandin E2 synthesis. These results strongly suggest that thrombin induces AA release not by phosphatidylcholine hydrolysis by PLD nor phosphoinositide hydrolysis by PLC but mainly by PLA2 in osteoblast-like cells.  相似文献   

4.
Measuring platelet thromboxane B2 biosynthesis by gas-liquid chromatography with capillary column, we found that 15-hydroperoxy-arachidonic acid (15-HPETE) abolished the above biosynthesis under thrombin stimulation but not from exogenous arachidonic acid. This fact indicates that 15-HPETE inhibits the release of arachidonic acid from platelet phospholipids. However, the hydroxy-derivative of 15-HPETE, called 15-HETE does not have this activity. In addition, 15-HPETE has no inhibiting effect on platelet phospholipase A2 activity. Since, it has been previously published that 15-HPETE inhibits platelet diglyceride lipase, we conclude that the phosphatidylinositol specific phospholipase C-diglyceride lipase pathway could be essential in providing arachidonic acid from phospholipids, at least under low doses of thrombin.  相似文献   

5.
Neomycin is a potent agent for arachidonic acid release in human platelets   总被引:6,自引:0,他引:6  
Neomycin (10 microM - 1 mM) was found to induce considerable release of [3H]arachidonic acid from phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine in saponin-permeabilized human platelets prelabeled with [3H]arachidonic acid. The magnitude of arachidonate liberation was almost equal to that induced by A23187 (400 nM) or even greater than that caused by thrombin (1 U/ml). Moreover, neomycin enhanced arachidonic acid release induced by thrombin. Since no significant formation of diacylglycerol and phosphatidic acid via phospholipase C was observed, the arachidonate liberation was considered to be mainly catalyzed by phospholipase A2 action. Addition of neomycin (100 microM) to 45Ca2+-preloaded platelets elicited 45Ca2+ mobilization from intracellular stores. These results indicate evidence that neomycin evokes Ca2+ mobilization from internal stores, which leads to activation of phospholipase A2 to release arachidonic acid in human platelets.  相似文献   

6.
Human platelets were depleted of intracellular Ca2+ and then made selectively permeable to external Ca2+ by addition of the ionophore ionomycin. In this cell system a rapid release of arachidonic acid was seen in direct response to added Ca2+ at concentrations corresponding to cytosolic Ca2+ levels measured in thrombin-stimulated platelets. Thrombin and other activators of Ca2+/phospholipid-dependent protein kinase (C-kinase) potentiated the Ca2+-stimulated arachidonic acid release while exerting little or no effect in the absence of added Ca2+. Agents which increase (R59022) or decrease (isoquinolinesulphonylmethylpiperazine) the activation of C-kinase correspondingly enhanced or inhibited, respectively, the potentiation of arachidonic acid release caused by thrombin. These results support the hypothesis that arachidonic acid release in human platelets is regulated by a co-operative action between intracellular Ca2+ and C-kinase.  相似文献   

7.
GTP or GTP gamma S alone caused low but significant liberation of arachidonic acid in saponin-permeabilized human platelets but not in intact platelets. GTP or GTP gamma S also enhanced thrombin-induced [3H]arachidonic acid release in permeabilized platelets. Inhibitors of the phospholipase C (neomycin)/diacylglycerol lipase (RHC 80267) pathway for arachidonate liberation did not reduce the [3H]arachidonic acid release. The loss of [3H]arachidonate radioactivity from phosphatidylcholine was almost equivalent to the increase in released [3H]arachidonic acid, suggesting the hydrolysis of phosphatidylcholine by phospholipase A2. The effect of GTP gamma S was greater at lower Ca2+ concentrations. These data indicate that the release of arachidonic acid by phospholipase A2 in saponin-treated platelets may be linked to a GTP-binding protein.  相似文献   

8.
Two inhibitors of thrombin-stimulated arachidonic acid release from platelets, p-bromophenacyl bromide and mepacrine, were examined for their ability to inhibit the phospholipase C-diglyceride lipase pathway. This pathway involves hydrolysis of phosphatidylinositol to diglyceride, followed by release of arachidonate from diglyceride, and has been proposed as an alternative or addition to phospholipase A2 as a mechanism for arachidonate release. p-Bromophenacyl bromide, a potent alkylating agent, was shown to cause a time-dependent inhibition of phosphatidylinositol-specific phospholipase C activity in crude platelet extracts; the inhibition was >90% after 15 min incubation with 100 μmp-bromophenacyl bromide. However, p-bromophenacyl bromide was also shown to destroy about one-half of the titratable sulfhydryl groups in whole platelets under similar conditions. The lack of specificity of p-bromophenacyl bromide was further demonstrated by our finding that thrombin-stimulated serotonin release was also inhibited by conditions inhibiting arachidonate release and that diglyceride lipase activity was decreased by higher levels of p-bromophenacyl bromide. Mepacrine was found to inhibit the activity of phosphatidylinositol-specific phospholipase C and had a greater effect at low substrate concentrations. The loss of [14C]arachidonate from both endogenous phosphatidylinositol and phosphatidylcholine in intact platelets was also inhibited. Thrombin-stimulated serotonin release was impaired by mepacrine also but only at a concentration 10-fold greater than that required to prevent arachidonate release. Thus we have shown that these two agents which inhibit arachidonate release are inhibitors of the phosphatidylinositol-specific phospholipase C-diglyceride lipase pathway. The multiple effects produced by both compounds limit their utility as agents to examine the source and mechanism of arachidonate release.  相似文献   

9.
In the present work we investigated the effect of serine esterase inhibitors such as 2-nitro-4-carboxyphenyl N,N-diphenylcarbamate (NCDC) and phenylmethylsulfonyl fluoride (PMSF), as well as the effect of mepacrine on thrombin-induced mobilization of arachidonic acid (AA) in human platelets. The inhibitor NCDC (0.6 mM) completely abolished the thrombin-induced activation of phospholipase C, phospholipase A2, and transacylase enzymes, whereas the pretreatment of platelets with PMSF (2 mM) resulted in a highly selective inhibition of phospholipase A2 and transacylase activities, with no marked effect on thrombin-induced activation of phospholipase C. The thrombin-induced release of [3H]AA from phosphatidylcholine and phosphatidylinositol was reduced by 90 and 56%, respectively, in the presence of PMSF. This inhibitor also caused a parallel inhibition in the accumulation of [3H]AA (85%) with little effect on thrombin-induced formation of [3H]phosphatidic acid (5%), whereas mepacrine (0.4 mM) caused a selective inhibition of phospholipase A2 and transacylase activities with concomitant stimulation of [3H]phosphatidic acid formation in intact human platelets. These results demonstrate that NCDC and PMSF (serine esterase inhibitors) do not affect agonist-induced activation of phospholipases that mobilize arachidonic acid through a common site. Our results further demonstrate that the inhibition of [3H]AA release observed in the presence of NCDC, PMSF, and mepacrine is primarily due to their direct effects on enzyme activities, rather than due to their indirect effects through formation of complexes between inhibitors and membrane phospholipids. Based upon these results, we also conclude that the combined hydrolysis of phosphatidylcholine and phosphatidylinositol by phospholipase A2 serves as a major source for eicosanoid biosynthesis in thrombin-stimulated human platelets.  相似文献   

10.
11.
The effects of whole-body gamma irradiation (8.4 Gy) were studied on arachidonic acid (AA) metabolism in rats' blood platelets, from day D + 1 to day D + 10 after irradiation. AA conversion into thromboxane B2 (TxB2) increased at D + 1 and then gradually decreased to very low values from D + 7 to D + 10. This decrease in the conversion of exogenous AA into TxB2 was due to a lower AA incorporation into platelets and not to a decrease of cyclooxygenase and thromboxane-synthetase activities. AA incorporation into membrane phospholipids of blood platelets was much more decreased than AA incorporation into whole platelets; moreover, the lipid composition of the platelet membranes was markedly modified after irradiation, which must have resulted in structural and functional changes in these membranes; from these effects of whole-body gamma irradiation on platelets, the latter's membranes appeared as a major site of in vivo radiation damage in these cells.  相似文献   

12.
Stimulation of platelets with collagen results in the mobilization of arachidonic acid (AA) from phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylinositol (PI). In this study the effect of aspirin, indomethacin, BW755C and prostaglandin H2 (PGH2) on labelled AA release in response to varied concentrations of collagen was investigated. Our results indicate that aspirin (0.56 mM) and indomethacin (5.6 microM) not only inhibited the collagen-mediated formation of cyclo-oxygenase metabolites, but also caused a significant reduction in the accumulation of free labelled AA and 12-hydroxyeicosatetraenoic acid (12-HETE) (21-64%). Aspirin and indomethacin also inhibited the release of [3H]AA from PC (37-75%) and PI (33-63%). The inhibition of AA release caused by aspirin was reversed partially by PGH2 (1 microM). In contrast, a smaller/no inhibition of collagen-stimulated labelled AA and 12-HETE accumulation (0-11%) and of collagen-stimulated AA loss from PC and PI was observed in the presence of BW755C. The results obtained in the presence of aspirin, indomethacin and BW755C at lower concentrations of collagen further demonstrate that AA release from PI (45-61% inhibition at 10 micrograms of collagen), but not from PC, was affected by the inhibition of cyclo-oxygenase. The results obtained on the effect of PGH2 further support that deacylation of phospholipids occurs independently of cyclo-oxygenase metabolites, particularly at higher concentrations of collagen. These results also demonstrate that aspirin and indomethacin, but not BW755C, cause a direct inhibition of collagen-induced [3H]AA liberation from PC as well as from PI. We also conclude that the diacylglycerol lipase pathway is a minor, but important, route for AA release from PI in collagen-stimulated human platelets. The mechanisms underlying the regulation of AA release by collagen in the absence of cyclo-oxygenase metabolites are not clear.  相似文献   

13.
Thrombin stimulation of human platelets initiates a membrane depolarization attributable to a Na+ influx into, and an alkalinization of, the cytoplasm, both of which follow a similar rapid time scale and thrombin-dose dependence. These responses precede secretion of the contents of the dense granules (serotonin) and, after 1 minute, of lysosomes (beta-glucuronidase). We have evaluated these parameters in the presence of 2H2O in order to determine if the Na+ influx and H+ efflux are sequential or simultaneous. NMR evidence indicates that 2H2O equilibration in rapid, and virtually complete within the 3 min prestimulation platelet equilibration period. In response to an 0.05 U/ml addition of thrombin, the rate of depolarization is 70-80% slower in 2H2O than in H2O. The time to reach maximal depolarization is 5 to 10 seconds longer in 2H2O, the extent of depolarization 60% inhibited, and the pH change 85% inhibited. The serotonin secretion is unaltered, while the beta-glucuronidase secretion is 130-180% enhanced. Dimethylamiloride inhibits the Na+ influx and the pH change completely. These results suggest that the Na+ and H+ fluxes across the plasma membrane are interdependent but neither simultaneous nor electroneutral. Furthermore, granule secretion, previously shown by us to be independent of the existent Na+ gradient, depends on the cytoplasmic K+ and H+ concentrations.  相似文献   

14.
Washed human platelets stimulated with 50 microM sodium arachidonate rapidly accumulated glutathione disulfide to a peak concentration of 0.620 nmole per 10(9) cells, 200% of control (unstimulated) levels. Total glutathione remained unchanged. The rise in glutathione disulfide was transitory, returning to control values within 30 seconds in aggregating platelets. Similar findings were observed in washed platelets aggregated with 5 U/ml thrombin. Platelet aggregation was not necessary for the generation of glutathione disulfide. However, cyclooxygenase activity was necessary for the generation of glutathione disulfide. Aspirin treated platelets aggregated with thrombin demonstrated no thromboxane B2 production and no glutathione disulfide generation. Dose response studies with both agonists demonstrated a direct relationship between the amount of thromboxane B2 produced and the amount of glutathione disulfide generated by stimulated platelets. During the conversion of arachidonic acid to thromboxane B2, unesterified arachidonic acid is oxygenated to prostaglandin G2 which is subsequently reduced to prostaglandin H2. Both reactions are catalyzed by the enzyme prostaglandin H synthase. Our data support the hypothesis that glutathione is an important supplier of reducing equivalents to prostaglandin H synthase during the production of prostaglandin H2 in human platelets.  相似文献   

15.
We examined the effects of newly exploited amiloride analogs on protein phosphorylation and serotonin secretion in human platelets. 5-(N-methyl-N-isobutyl) amiloride (IBA) and, to a lesser extent, 5-(N-methyl-N-isopropyl) amiloride (IPA), highly specific inhibitors of Na+/H+-pump, induced the phosphorylation of 47K-dalton protein and myosin light chain (20K). The phosphorylation was inhibited by apyrase. On the other hand, 3', 4'-dichlorobenzamil (DCB) and 2', 4'-dimethylbenzamil (DMB), highly specific inhibitors of Na+/Ca2+-pump, and to a lesser extent amiloride analogs induced serotonin secretion. Apparently there was dissociation between the phosphorylation and the serotonin release induced by the analogs.  相似文献   

16.
Previous studies have demonstrated that [3H]arachidonic acid is released from prelabeled human neutrophil phospholipids when the cells are stimulated by calcium ionophore A23187 or by opsonized zymosan. Neither lysophospholipid generated by phospholipase A2 activity, diacylglycerol nor monoacylglycerol produced via phospholipase C/diacylglycerol lipase action have been identified following neutrophil challenge. The inability to detect any intermediates during the release of arachidonate is due to either rapid reacylation of lysophospholipid or conversion of diacylglycerol (monoacylglycerol) to cellular acylglycerols. The addition of exogenous [14C]fatty acid at the time of challenge was employed to determine the involvement of either phospholipase A2 or phospholipase C activities. Neutrophil stimulation with calcium ionophore A23187 resulted in an incorporation of exogenous [14C]arachidonate into phosphatidylinositol and phosphatidylcholine, those phospholipids which specifically release arachidonate. When the saturated fatty acid, [14C]stearate, replaced [14C]arachidonate, very little [14C]fatty acid was incorporated into any of the phospholipid species. Lipid phosphorus measurements revealed no significant mass change in any phospholipid class following ionophore challenge. Production of [14C]phosphatidic acid was not detected, as would be expected if diacylglycerol kinase and de novo phospholipid metabolism were significantly involved.  相似文献   

17.
The effect of α-tocopherol on the oxidative transformation of arachidonic acid was investigated in human platelets. The major products of lipoxygenase and cyclo-oxygenase pathways were separated by high performance liquid chromatography (HPLC) and thin layer chromatoggaphy (TLC) evaluated by scanning the radiochromatograms. This study differs from others in the vitamin E field in important aspects of its experimental design: the prelabeling of platelets with non-aggregating concentrations of 14C-arachidonic acid, and the addition of α-tocopherol as a colloidal suspension rather than as an ethanolic solution. A moderately potent but consistent reduction of apparent cyclo-oxygenase activity by α-tocopherol could be demonstrated by TLC and HPLC. This effect was best shown by the change of the HETE/HHT ratio which increased significantly in vitamin E-treated platelets. It was found to be dosedependent up to 1 MM a-tocopherol, the maximal concentration tested in this study. Alpha-tocopherol quinone was equally effective in this action.  相似文献   

18.
Phagocytosis-induced release of arachidonic acid from human neutrophils   总被引:6,自引:0,他引:6  
The phospholipids of human neutrophils were labeled with [3H] arachidonic acid and [14C] palmitic acid. Phagocytosis of opsonized zymosan resulted in rapid release of free arachidonic acid but not of palmitic acid. Arachidonic acid was not released when the cells were exposed to unopsonized zymosan, zymosan-activated serum, or phorbol myristate acetate. These observations suggest that phagocytosis of opsonized zymosan results in the activation of a phospholipase A2.  相似文献   

19.
Cultured pulmonary artery endothelial cells produce PGI2 as their primary prostaglandin. Conditions which inhibit cell division have been shown to accelerate the synthesis of this compound. Exposure of endothelial cells to gamma radiation results in an irreversible cessation of growth and enhanced production of PGI2. The level of PGI2 measured after radiation exposure exceeds that observed in cultures rendered quiescent by serum reduction. This indicates a role for gamma radiation in the elevation of PGI2 levels which is distinct from its effect on cell division. Results presented indicate that exposure to gamma radiation does not, in and of itself, elevate PG levels but capacitates cells for enhanced production when presented with appropriate stimuli. Increased PGI2 synthesis appears to be a result of an observed increase in arachidonic acid release and an activation of cyclooxygenase.  相似文献   

20.
Cultured pulmonary artery endothelial cells produce PGI2 as their primary prostaglandin. Conditions which inhibit cell division have been shown to accelerate the synthesis of this compound. Exposure of endothelial cells to γ raidation results in an irreversible cessation of growth and enhanced production of PGI2. The level of PGI2 measured after radiation exposure exceeds that observed in cultures rendered quiescent by serum reduction. This indicates a role for γ radiation in the elevation of PGI2 levels which is distinct from its effect on cell division. Result presented indicate that exposure to γ radiation does not, in and of itself, elevate PG levels but capacitates cells for enhanced production when presented with appropriate stimuli. Increased PGI2 synthesis appears to be a result of an observed increase in arachidonic acid release and an activation of cyclooxygenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号