首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Three-dimensional structure of a bacterial oxalate transporter   总被引:11,自引:0,他引:11  
The major facilitator superfamily (MFS) represents one of the largest classes of evolutionarily related membrane transporter proteins. Here we present the three-dimensional structure at 6.5 A resolution of a bacterial member of this superfamily, OxlT. The structure, derived from an electron crystallographic analysis of two-dimensional crystals, reveals that the 12 helices in the OxlT molecule are arranged around a central cavity, which is widest at the center of the membrane. The helices divide naturally into three groups: a peripheral set comprising helices 3, 6, 9 and 12; a second set comprising helices 2, 5, 8 and 11 that faces the central substrate transport pathway across most of the length of the membrane; and a third set comprising helices 1, 4, 7 and 10 that participate in the pathway either on the cytoplasmic side (4 and 10) or on the periplasmic side (1 and 7). Overall, the architecture of the protein is remarkably symmetric, providing a compelling molecular explanation for the ability of such transporters to carry out bi-directional substrate transport.  相似文献   

2.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   

3.
The major facilitator superfamily includes a large collection of evolutionarily related proteins that have been implicated in the transport of a variety of solutes and metabolites across the membranes of organisms ranging from bacteria to humans. We have recently reported the three-dimensional structure, at 6.5 A resolution, of the oxalate transporter, OxlT, a representative member of this superfamily. In the oxalate-bound state, 12 helices surround a central cavity to form a remarkably symmetrical structure that displays a well-defined pseudo twofold axis perpendicular to the plane of the membrane as well as two less pronounced, mutually perpendicular pseudo twofold axes in the plane of the membrane. Here, we combined this structural information with sequence information from other members of this protein family to arrive at models for the arrangement of helices in this superfamily of transport proteins. Our analysis narrows down the number of helix arrangements from about a billion starting possibilities to a single probable model for the relative spatial arrangement for the 12 helices, consistent both with our structural findings and with the majority of previous biochemical studies on members of this superfamily.  相似文献   

4.
Channelrhodopsin-2 (ChR2) is the prototype of a new class of light-gated ion channels that is finding widespread applications in optogenetics and biomedical research. We present a  6-Å projection map of ChR2, obtained by cryo-electron microscopy of two-dimensional crystals grown from pure, heterologously expressed protein. The map shows that ChR2 is the same dimer with non-crystallographic 2-fold symmetry in three different membrane crystals. This is consistent with biochemical analysis, which shows a stable dimer in detergent solution. Comparison to the projection map to bacteriorhodopsin indicates a similar structure of seven transmembrane alpha helices. Based on the projection map and sequence alignments, we built a homology model of ChR2 that potentially accounts for light-induced channel gating. Although a monomeric channel is not ruled out, comparison to other membrane channels and transporters suggests that the ChR2 channel is located at the dimer interface on the 2-fold axis, lined by transmembrane helices 3 and 4.  相似文献   

5.
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.  相似文献   

6.
Leukotriene (LT) C(4) synthase, an 18 kDa integral membrane enzyme, conjugates LTA(4) with reduced glutathione to form LTC(4), the parent compound of all cysteinyl leukotrienes that play a crucial role in the pathobiology of bronchial asthma. We have calculated a projection map of recombinant human LTC(4) synthase at a resolution of 4.5 A by electron crystallography, which shows that the enzyme is a trimer. A map truncated at 7.5 A visualizes four transmembrane alpha helices per protein monomer. The densities in projection indicate that most of the alpha helices run nearly perpendicular to the plane of the membrane. At this resolution, LTC(4) synthase is strikingly similar to microsomal glutathione S-transferase 1, which belongs to the same gene family but bears little sequence identity and no resemblance in substrate specificity to the LTC(4) synthase. These results provide new insight into the structure and function of membrane proteins involved in eicosanoid and glutathione metabolism.  相似文献   

7.
The glycerol-3-phosphate transporter (GlpT) is a member of the major facilitator superfamily (MFS). GlpT is an organic phosphate/inorganic phosphate antiporter. It shares a similar fold with other MFS transporters (e.g. LacY and EmrD) consisting of 12 transmembrane (TM) helices which form two domains (each of six TM helices) surrounding a central ligand-binding cavity. The TM helices (especially the cavity-lining helices) contain a large number of proline and glycine residues, which may aid in the conformational changes believed to underline the transport mechanism. Molecular dynamics simulations in a phospholipid bilayer have been used to compare the conformational properties of the isolated TM helices with those in the intact GlpT protein. Analysis of these simulations focuses on the role of proline-induced flexibility in the TM helices. Our results are consistent with the proposed rocker switch mechanism for transport by GlpT. In particular, the simulations highlight the cavity-lining helices (H4, H5, H10 and H11) as being significantly flexible, suggesting that the transport mechanism may involve intra-helix motions in addition to pseudo-rigid body motions of the N- and C-terminal domains relative to one another.  相似文献   

8.
Our structural knowledge of the major facilitator superfamily (MFS) has dramatically increased in the past year with three structures of proteins from the MFS (oxalate/formate antiporter; lactose/proton symporter and the Pi/glycerol-3-phosphate antiporter). All three structures revealed 12 transmembrane helices forming two distinct domains and could imply that members of the MFS have preserved both secondary as well as tertiary structural elements during evolution. Lactose permease, a particularly well-studied member of the MFS, has been extensively explored by a number of molecular biological, biochemical and biophysical approaches. In this review, we take a closer look at the structure of LacY and incorporate a wealth of biochemical and biophysical data in order to propose a possible mechanism for lactose/proton symport. In addition, we make some brief comparisons between the structures of LacY and GlpT.  相似文献   

9.
Our structural knowledge of the major facilitator superfamily (MFS) has dramatically increased in the past year with three structures of proteins from the MFS (oxalate/formate antiporter; lactose/proton symporter and the P(i)/glycerol-3-phosphate antiporter). All three structures revealed 12 transmembrane helices forming two distinct domains and could imply that members of the MFS have preserved both secondary as well as tertiary structural elements during evolution. Lactose permease, a particularly well-studied member of the MFS, has been extensively explored by a number of molecular biological, biochemical and biophysical approaches. In this review, we take a closer look at the structure of LacY and incorporate a wealth of biochemical and biophysical data in order to propose a possible mechanism for lactose/proton symport. In addition, we make some brief comparisons between the structures of LacY and GlpT.  相似文献   

10.
Electron cryomicroscopy of frozen-hydrated two-dimensional crystals of NhaA, a Na+/H+ antiporter from Escherichia coli predicted to have 12 transmembrane alpha-helices, has facilitated the calculation of a projection map of NhaA at 4.0 A resolution. NhaA was homologously expressed in E.coli with a His6 tag, solubilized in dodecyl maltoside and purified in a single step using Ni2+ affinity chromatography. Two-dimensional crystals were obtained after reconstitution of purified protein with E.coli lipids. The projection map reveals that this secondary transporter has a highly asymmetric structure in projection. NhaA exhibits overall dimensions of approximately 38x48 A with a ring-shaped density feature probably corresponding to a bundle of tilted helices, adjacent to an elongated region of density containing several peaks indicative of transmembrane helices. Two crystal forms with p22121 symmetry show tightly packed dimers of NhaA which differ in the interactions between adjacent dimers. This work provides the first direct glimpse into the structure of a secondary transporter.  相似文献   

11.
Experiments were designed to evaluate the proximity of transmembrane helices two (TM2) and eleven (TM11) in the tertiary structure of OxlT, the oxalate:formate exchange transporter of Oxalobacter formigenes. A tandem duplication of the Factor Xa protease cleavage site (IEGRIEGR) was inserted into the central cytoplasmic loop of an OxlT cysteine-less derivative in which an endogenous cleavage site had been eliminated by mutagenesis (R248Q). Using this host, double cysteine derivatives were constructed so as to pair one of seventeen positions in TM2 with one of four positions in TM11. Following treatment of membrane vesicles with Cu(II)(1,10-phenanthroline)(3), molecular iodine, or N,N'-o-phenylenedimaleimide, samples were exposed to Factor Xa, and disulfide bond formation was assessed after SDS-polyacrylamide gel electrophoresis by staining with antibody directed against the OxlT C terminus. In the absence of disulfide bond formation, exposure to Factor Xa revealed the expected C-terminal 22-kDa fragment, a result unaffected by the presence of reductant. By contrast, after disulfide formation, OxlT mobility remained at 35 kDa, and appearance of the 22-kDa fragment required addition of 200 mm dithiothreitol prior to electrophoresis. The four TM11 positions chosen for cysteine substitution lie on a helical face known to interact with substrate. Similarly, TM2 positions supporting disulfide trapping were also confined to a single helical face. We conclude that TM2 and TM11 are in close juxtaposition to one another in the tertiary structure of OxlT.  相似文献   

12.
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.  相似文献   

13.
Many hormones and sensory stimuli signal through a superfamily of seven transmembrane-spanning receptors to activate heterotrimeric G proteins. How the seven transmembrane segments of the receptors (a molecular architecture of bundled alpha-helices conserved from yeast to man) work as "on/off" switches remains unknown. Previously, we used random saturation mutagenesis coupled with a genetic selection in yeast to determine the relative importance of amino acids in four of the seven transmembrane segments of the human C5a receptor (Baranski, T. J., Herzmark, P., Lichtarge, O., Gerber, B. O., Trueheart, J., Meng, E. C., Iiri, T., Sheikh, S. P., and Bourne, H. R. (1999) J. Biol. Chem. 274, 15757-15765). In this study, we evaluate helices I, II, and IV, thereby furnishing a complete mutational map of the seven transmembrane helices of the human C5a receptor. Our analysis identified 19 amino acid positions resistant to non-conservative substitutions. When combined with the 25 essential residues previously identified in helices III and V-VII, they delineate two distinct components of the receptor switch: a ligand-binding surface at or near the extracellular surface of the helix bundle and a core cluster in the cytoplasmic half of the bundle. In addition, we found critical amino acids in the first and second helices that are predicted to face the lipid membrane. These residues form an extended surface that might mediate interactions with lipids and other membrane proteins or function as an oligomerization domain with other receptors.  相似文献   

14.
Punta M  Maritan A 《Proteins》2003,50(1):114-121
In this article, a membrane-propensity scale for amino acids is derived using only two ingredients: (i) a set of transmembrane helices segments from membrane protein crystal structures and (ii) the request that each component of the set has a free energy lower than that of a typical soluble protein sequence of the same length. Although the most widely used hydropathy scales satisfy this request, we use an optimization procedure that allows for extraction of an optimal scale, which correlates equally well with those scales. We show that, if the choice of the sequence database is accurate, significant knowledge-based scales, which are robust with respect to changes in the learning set, can be easily derived. The obtained scales can be used for transmembrane helices prediction. The predictive power of one of these scales is tested on membrane proteins, soluble proteins, and signal peptides databases, finding that its performances is comparable with those of the hydropathy scales.  相似文献   

15.
A major multidrug transporter, MDR1 (multidrug resistance 1), a member of the MFS (major facilitator superfamily), invariably contributes to an increased efflux of commonly used azoles and thus corroborates their direct involvement in MDR in Candida albicans. The Mdr1 protein has two transmembrane domains, each comprising six transmembrane helices, interconnected with extracellular loops and ICLs (intracellular loops). The introduction of deletions and insertions through mutagenesis was used to address the role of the largest interdomain ICL3 of the MDR1 protein. Most of the progressive deletants, when overexpressed, eliminated the drug resistance. Notably, restoration of the length of the ICL3 by insertional mutagenesis did not restore the functionality of the protein. Interestingly, most of the insertion and deletion variants of ICL3 became amenable to trypsinization, yielding peptide fragments. The homology model of the Mdr1 protein showed that the molecular surface-charge distribution was perturbed in most of the ICL3 mutant variants. Taken together, these results provide the first evidence that the CCL (central cytoplasmic loop) of the fungal MFS transporter of the DHA1 (drug/proton antiporter) family is critical for the function of MDR. Unlike other homologous proteins, ICL3 has no apparent role in imparting substrate specificity or in the recruitment of the transporter protein.  相似文献   

16.
A topology map of a membrane protein defines the location of transmembrane helices and the orientation of soluble domains relative to the membrane. In the absence of a high-resolution structure, a topology map is an essential guide for studying structure-function relationships. Although these maps can be predicted directly from amino acid sequence, the predictions are more accurate if combined with experimental data, which are usually obtained by fusing a reporter protein to the C-terminus of the protein. However, as reporter proteins are large, they cannot be used to report on the cytoplasmic/periplasmic location of the N-terminus of a protein. Here, we show that the bimolecular split-green fluorescent protein complementation system can overcome this limitation and can be used to determine the location of both the N- and C-termini of inner membrane proteins in Escherichia coli.  相似文献   

17.
Multidrug resistance in human tumour cells is often associated with increased expression of the 190kDa multidrug resistance protein, MRP1, that belongs to the ATP-binding cassette superfamily of transport proteins. MRP1 is also an efficient transporter of many organic anions. In the present study, we have mapped the epitope of the MRP1-specific murine monoclonal antibody (MAb) MRPm5 to the decapeptide (1063)FFERTPSGNL(1072) located in the cytoplasmic loop (CL6) linking transmembrane helices 13 and 14 in the third membrane spanning domain of the protein. Several amino acids in the cytoplasmic loops of MRP1 have been reported to be important for its transport function; nevertheless, MAb MRPm5 does not inhibit vesicular uptake of the high affinity substrate leukotriene C(4). None of the other MRP1-reactive MAbs described to date map to CL6 of MRP1 which in turn enhances the utility of MAb MRPm5 for both clinical and experimental investigations of this transporter.  相似文献   

18.
The structure of Na, K-ATPase was determined by electron crystallography at 9.5 A from multiple small 2-D crystals induced in purified membranes isolated from the outer medulla of pig kidney. The density map shows a protomer stabilized in the E(2) conformation which extends approximately 65 A x 75 A x 150 A in the asymmetric unit of the P2 type unit cell. The alpha, beta, and gamma subunits were demonstrated in the membrane crystals with Western blotting and related to distinct domains in the density map. The alpha subunit corresponds to most of the density in the transmembrane region as well as the large hydrophilic headpiece on the cytoplasmic side of the membrane. The headpiece is divided into three separated domains, which are similar in overall shape to the domains of the calcium pump of the sarcoplasmic reticulum. One of these domains gives rise to a characteristic elongated projection onto the membrane plane while the putative nucleotide binding and phosphorylation domains form comparatively compact densities in the rest of the cytoplasmic part of the structure. Density on the extracellular face corresponds to the protein part of the beta subunit and is located as an extension of the transmembrane region perpendicular to the membrane plane. The structure of the lipid bilayer spanning part suggests the positions for the transmembrane helix from the beta subunit as well as the small gamma subunit present in this Na,K-ATPase. Two groups of ten helices from the catalytic alpha subunit corresponds to the remaining density in the transmembrane region. The present results demonstrate distinct similarities between the structure of the alpha subunit of Na,K-ATPase as determined here by cryo-electron microscopy and the reported X-ray structure of Ca-ATPase. However, conformational changes between the E(1) and E(2) forms are suggested by different relative positions of cytoplasmatic domains.  相似文献   

19.
OxlT, a secondary carrier found in Oxalobacter formigenes, mediates the exchange of divalent oxalate and monovalent formate. Because OxlT has an unusually high turnover number (greater than or equal to 1000/s), and because formate, one its substrates, shows high passive membrane permeability as formic acid, it has been difficult to obtain information on protein-substrate interactions using traditional methods in membrane biology. For this reason, we devised a new way to measure substrate dissociation constants. Detergent-solubilized material was exposed to inactivating temperatures in the absence or presence of OxlT substrates, and periodic reconstitution was used to monitor the kinetics of thermal decay. The data were consistent with a simple scheme in which only unliganded OxlT was temperature-sensitive; this premise, along with the assumption of equilibrium between liganded and unliganded species, allowed calculation of substrate dissociation constants for oxalate (18 +/- 3 microM), malonate (1.2 +/- 0.2 mM), and formate (3.1 +/- 0.6 mM). Further analysis revealed that substrate binding energy contributed at least 3.5 kcal/mol to stabilization of solubilized OxlT. Accordingly, we suggest that substrate binding energy is directly involved in driving protein structure reorganization during membrane transport. This new approach to analyzing protein-substrate interactions may have wider application in the study of membrane carriers.  相似文献   

20.
OxlT is a bacterial transporter protein with 12 transmembrane segments that belongs to the Major Facilitator Superfamily of transporters. It facilitates the exchange of oxalate and formate across the membrane of the Gram-negative bacterium Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional, tube-like crystals of OxlT, we have previously determined the three-dimensional structure of this transporter at 6.5 A resolution. Here, we report conditions to obtain crystalline, two-dimensional sheets of OxlT with diameters exceeding 2 microm. Images of the crystalline sheets were recorded at liquid nitrogen temperatures on a transmission electron microscope equipped with a field-emission gun, operated at 300 kV. Computed optical diffraction patterns from the best images display measurable reflections to about 3.4A, and electron diffraction patterns show spots to about 3.2 A resolution in the best cases. As in the case of the tube-like crystals, the new crystalline sheets also belong to the p22(1)2(1) symmetry group. However, the unit cell dimensions of 102.7A x 67.3 A are significantly smaller in one direction than those previously observed with the tube-like crystals that display unit cell dimensions of 100.3A x 79.0 A. Different regions of OxlT are involved in intermolecular contacts in the two types of crystals, and the improved resolution of the sheet crystals appears to be mainly attributable to this tighter packing of the monomers within the unit cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号