首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
During a large-scale screen of a human fetal brain cDNA library, a novel human gene GNB2L1 encoding a novel RACK (receptor of activated protein kinase C) protein was isolated and sequenced. The cDNA is 1142 bp long and has a predicted open reading frame encoding 316 aa. The predicted protein shows higher similarity to rat RACK1 and many RACK proteins of different organisms including Drosophila, C. elegans, mouse, rat, human, C. fasciculata, zebrafish, A. thaliana, S. cerevisiae and so on, suggesting it is conserved during evolution. The gene was mapped to human chromosome 5q35.3, the telomer position of chromosome 5q, in which the disease gene for early-onset primary congenital lymphedema was mapped. Also, 5q35.3 is a frequently reported location for cytogenetic and molecular abnormalities in renal cell carcinomas. The gene has 8 exons and 7 introns. It is expressed ubiquitously in many human tissues detected by northern blot analysis and RT-PCR.  相似文献   

8.
9.
COP1 is a negative regulator of Arabidopsis light-dependent development. Mutation of the COP1 locus causes constitutive photomorphogenesis in the dark. Here, we report the identification of an isoform of the COP1 protein, named COP1b, which is generated by alternative splicing. COP1b has a 60-amino acid deletion in the WD-40 repeat domain relative to the full-length COP1. This splicing step is light-independent and takes place mostly in mature seeds and in germinating seedlings. Transgenic Arabidopsis plants that overexpress COP1b show a de-etiolated phenotype in the dark, with a short hypocotyl, open and developed cotyledons. The transgenic seedlings are adult-lethal. These phenotypes closely resemble that of severe cop-1 mutants, indicating that COP1b has a dominant negative effect on COP1 function. Received: 28 April 1997 / Accepted: 8 October 1997  相似文献   

10.
BACKGROUND AND AIMS: It has previously been shown that Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) contributed to resistance to abiotic stresses. Interestingly, it has also been reported that expression of ethylene-responsive factor (ERF) genes including AtEBP were regulated by the activity of APETALA2 (AP2), a floral homeotic factor. AP2 is known to regulate expression of several floral-specific homeotic genes such as AGAMOUS. The aim of this study was to clarify the relationship between AP2 and AtEBP in gene expression. METHODS: Northern blot analysis was performed on ap2 mutants, ethylene-related Arabidopsis mutants and transgenic Arabidopsis plants over-expressing AtEBP, and a T-DNA insertional mutant of AtEBP. Phenotypic analysis of these plants was performed. KEY RESULTS: Expression levels of ERF genes such as AtEBP and AtERF1 were increased in ap2 mutants. Over-expression of AtEBP caused upregulation of AP2 expression in leaves. AP2 expression was suppressed by the null-function of ethylene-insensitive2 (EIN2), although AP2 expression was not affected by ethylene treatment. Loss of AtEBP function slightly reduced the average number of stamens. CONCLUSIONS: AP2 and AtEBP are mutually regulated in terms of gene expression. AP2 expression was affected by EIN2 but was not regulated by ethylene treatment.  相似文献   

11.
Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [ Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.  相似文献   

12.
13.
14.
15.
16.
The longevity of plant leaf organs is genetically determined. However, the molecular mechanisms underlying the control of longevity are still largely unknown. Here, we describe a T-DNA-insertional mutation of Arabidopsis thaliana that confers extended leaf longevity. The mutation, termed ore4-1, delays a broad spectrum of age-dependent leaf senescence, but has little effect on leaf senescence artificially induced by darkness, abscisic acid (ABA), methyl jasmonate (MeJA), or ethylene. The T-DNA was inserted within the promoter region of the plastid ribosomal small subunit protein 17 (PRPS17) gene, and this insertion dramatically reduced PRPS17 mRNA expression. In the ore4-1 mutant, the leaf growth rate is decreased, while the maturation timing is similar to that of wild-type. In addition, the activity of the photosystem I (PSI) is significantly reduced in the ore4-1 mutant, as compared to wild-type. Thus, the ore4-1 mutation results in a deficiency in various chloroplast functions, including photosynthesis, which may decrease leaf growth. Our results suggest a possible link between reduced metabolism and extended longevity of the leaf organs in the ore4-1 mutation.  相似文献   

17.
18.
The NIF3L1 protein is strongly conserved during evolution from bacteria to mammals and recently its function in neuronal differentiation has been demonstrated. In the present study we identified novel binding partners of human NIF3L1 by screening a HeLa cDNA-library using the yeast two-hybrid system. We could show that the NIF3L1 protein is interacting with itself and with the NIF3L1 binding protein 1 (NIF3L1 BP1), a novel protein of 23.67kDa bearing a putative leucine zipper domain. Furthermore, both interactions were confirmed using the mammalian two-hybrid system. Deletion analyses clearly demonstrated that a C-terminal region of 100 amino acids of the NIF3L1 BP1 is sufficient for the interaction with NIF3L1. The NIF3L1 BP1 is ubiquitously expressed and cotransfection experiments revealed that NIF3L1 and NIF3L1 BP1 interact in the cytoplasm of human LNCaP cells. This study provides novel insights into the cellular function of the NIF3L1 protein.  相似文献   

19.
20.
C Kao  L Snyder 《Journal of bacteriology》1988,170(5):2056-2062
Escherichia coli lit(Con) mutations cause a severe inhibition of gene expression late in infection by bacteriophage T4 owing to the overproduction of one, and possibly two, proteins (C. Kao, E. Gumbs, and L. Snyder, J. Bacteriol. 169:1232-1238, 1987). One or both of these proteins interact, either directly or indirectly, with a short sequence about one-quarter of the way into the major capsid protein gene of T4, and the inhibition occurs when this late gene of the virus is expressed. In this report we show that lit(Con) mutations are up-promoter mutations in the cryptic DNA element e14 and that only one of the proteins, gplit, of about 34 kilodaltons, is required for the inhibition. We have sequenced the lit gene and the surrounding regions. From the sequence, and from cell fractionation studies, we conclude that gplit is an inner membrane protein. Since the assembly of T4 heads is thought to occur on the inner face of the inner membrane, we propose that gplit interferes with a normal regulation which coordinates the synthesis of proteins and the assembly of T4 heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号