首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The B and the Z forms of the DNA hexamers d(m5C-G)3 and d(br5C-G)3 were investigated by means of NMR spectroscopy. It is demonstrated that the low-salt form of d(m5C-G)3 is a B DNA structure. The form, which becomes increasingly predominant when increasing amounts of MgCl2 and/or methanol are added to the solution, has Z DNA characteristics. It is shown that the major geometrical features of the Z form of d(m5C-G)3 in the crystal structure are maintained in solution, with the dC residues S sugar conformation, gamma + and the base in the anti orientation and the dG residues N (except the 3'-terminal residue), gamma t and syn. Neither the Z form of the methylated nor that of the brominated compound resembles the Z' form, in which the deoxy guanosine sugar rings adopt a C1'-exo conformation. Substitution of m5C by br5C causes no perceptible conformational changes in either the B or in the Z forms.  相似文献   

2.
The deoxyribose hexanucleoside pentaphosphate (m5dC-dG)3 has been studied by 500 MHz 1H NMR in D2O (0.1 M NaCl) and in D2O/deuterated methanol mixtures. Two conformations, in slow equilibrium on the NMR time scale, were detected in methanolic solution. Two-dimensional nuclear Overhauser effect (NOE) experiments were used to assign the base and many of the sugar resonances as well as to determine structural features for both conformations. The results were consistent with the an equilibrium in solution between B-DNA and Z-DNA. The majority of the molecules have a B-DNA structure in low-salt D2O and a Z-DNA structure at high methanol concentrations. A cross-strand NOE between methyl groups on adjacent cytosines is observed for Z-DNA but not B-DNA. The B-DNA conformation predominates at low methanol concentrations and is stabilized by increasing temperature, while the Z-DNA conformation predominates at high methanol concentrations and low temperatures. 31P NMR spectra gave results consistent with those obtained by 1H NMR. Comparison of the 31P spectra with those obtained on poly(dG-m5dC) allow assignment of the lower field resonances to GpC in the Z conformation.  相似文献   

3.
By means of one- and two-dimensional NMR spectroscopy the solution structures of the partly self-complementary octamer d(m5C-G-m5C-G-A-G-m5C-G) were investigated. It is shown that this DNA fragment, under conditions of high DNA concentration (8 mM DNA) and/or high ionic strength prefers to adopt a duplex structure. At low DNA concentration (0.4 mM DNA), the duplex exists in a 1:1 slow equilibrium with a monomeric hairpin form. Addition of salt destabilizes the hairpin structure in favour of the dimer. At high temperatures the hairpin form, as well as the dimer structure, exist in a fast equilibrium with the random-coil form. For the hairpin/random-coil equilibrium a Tm of 329 K and a delta H degree of -121 kJ.mol-1 were deduced. These thermodynamic parameters are independent of the DNA concentration, as is expected for a monomeric structure. For the dimer to coil transition a Tm of 359 K (1 M DNA) and a delta H degree of -285 kJ.mol duplex-1 were derived. The thermodynamic data of the hairpin-coil transition mutually agree with those recently reported for the hairpin to random coil equilibrium of the DNA octamer d(m5C-G-m5C-G-T-G-m5C-G) [Orbons, L. P. M., van der Marel, G. A., van Boom, J. H. & Altona, C. (1987) J. Biomol. Struct. Dyns. 4, 939-963]. It is demonstrated that the dimer structure exhibits B-DNA characteristics, as is witnessed by the NOESY experiments and the analysis of the proton-proton coupling data. It is shown that the base-pair formation of the G x A mismatches is anti-anti. A comparison of 1H and 31P chemical-shift data of the title compound with those of a well-characterized B-DNA structure reveals large differences in the dm5C(3)-dG(4)-dA(5) part of the mismatched dimer structure. These differences apparently indicate some major local structural changes due to the incorporation of the G x A mismatches. Under the most extreme conditions used (i.e. up to 3 M NaCl or 75% CH3OH in the presence of 10 mM MgCl2) no Z-DNA structure was observed. It is shown that the structural features of the hairpin form of the title compound mimic those of the hairpin structure of d(m5C-G-m5C-G-T-G-m5C-G). An energy-minimized model of the hairpin form is given.  相似文献   

4.
The partly self-complementary DNA octamer d(m5C-G-m5C-G-T-G-m5C-G) was investigated by NMR spectroscopy in solution. It is demonstrated that this peculiar DNA fragment, under suitable conditions of concentration, salt and temperature, exclusively prefers to adopt a monomeric hairpin form with a stem of three Watson-Crick type base pairs and a loop of two residues. At high single strand concentration (8 mM DNA) and low temperature (i.e. below 295 K) the hairpin occurs in slow equilibrium with a B-dimer structure. At high ionic strength (greater than or equal to 100 mM Na+) and/or in the presence of methanol a third species appears, which is assigned to a Z-like dimer. In the B form, as well as in the Z dimer, the two central base pairs form G.T wobble pairs with the bases as major tautomers.  相似文献   

5.
A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1H NMR studies in H2O and D2O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2", it was concluded that in d(CGCCGCAGC) and d(CGCCGTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins.  相似文献   

6.
The Z conformation of the auto complementary hexanucleoside pentaphosphate d(br5C-G)3 in 1 M NaClO4 solution has been investigated by using 2D NMR techniques. NOESY experiments performed at different temperatures show that the oligonucleotide exhibits end-to-end associations at room temperature. The conformation of the hexanucleotide molecules is very similar to that found in the crystal which was described by Chevrier et al. (J. Mol. Biol., 1986, 188, 707-719) as a Z-I form. When the temperature is increased the aggregates are dissociated and a conformational change is observed which is interpreted as a Z-I in equilibrium Z-II transition.  相似文献   

7.
Abstract

The polymorphism exhibited by the mismatched octamer d(m 5C-G-m5C-G-T-G-m5C-G), as a function of the temperature, DNA concentration and ionic strength, was investigated by means of NMR spectroscopy.

It is shown that this partly self-complementary DNA fragment, under conditions of low DNA concentration (0.4 mM) and low ionic strength, exclusively prefers to adopt a monomeric hairpin form, which consists of a stem of three Watson-Crick-type base pairs and a loop of only two residues. This in striking contrast with earlier intimations in literature, which postulated that in oligonucleotides loop formations containing only two residues are sterically impossible. Moreover, the hairpin form displays an unusual stability in comparison with previously reported hairpins. ATm of 332 K and a ΔH° of—130 kj · mol?1 were calculated for the hairpin to random coil transition.

At high DNA concentration (8 mM)and/or upon the addition of sodium chloride the hairpin form occurs in slow exchange with a B-DNA dimer structure (approximately 20% at 270 K, no added salt), which comprises two central GxT-mismatched base pairs with the bases as major tautomers.

At higher ionic strength (> 100 mM NaCI), or upon the addition of methanol, a third species appears, which is in slow exchange with both the B dimer and the hairpin form. This third species could be identified with a Z DNA form, comprising two GxT mismatches with the bases as major tautomers, with the guanine bases syn and the cytosine and thymine bases anti.  相似文献   

8.
The partial self-complementary 24-mer oligodeoxynucleotide d(C-G)5T4(C-G)5 forms a hairpin which can be enzymatically dimerized to a dumbbell structure. The blunt-ended nature of the hairpin is indicated by its ability to inhibit the T4 DNA ligase catalyzed joining of phi X174 HaeIII fragments. The hairpin monomer and dimer (dumbbell) undergo a reversible B to Z transition as shown by ultraviolet, circular dichroism, and 31P NMR spectroscopy. The Z form of the hairpin monomer and dimer is supported by monovalent ions (Na+), divalent ions (Mg2+ but not Mn2+), and dehydrating (ethanol) conditions. The conformational transition of d(C-G)5T4(C-G)5 monomer requires higher ionic or dehydrating conditions than those necessary for the corresponding linear oligomer d(C-G)5. The contribution of the loop (-T4-) of the hairpin to the apparent free energy change for the B to Z conformational transition at the midpoint was calculated to be 3.8 kJ mol-1.  相似文献   

9.
The Helical structures of d(C-G-C-A-m5C-G-T-G-m5C-G), d(m5C-G-C-A-m5C-G-T-G-C-G) and d(C-2aminoA-C-G-T-G) were studied in aqueous solution at various salt concentrations and temperatures by 1H-NMR spectroscopy. In 0.1 M NaCl solution only the B form was evidenced for these DNA fragments whereas in 4 M NaCl both B and Z forms, in slow exchange on the NMR time scale, were observed. Under these conditions the Z form accounted for less than 60% of the decamer conformation; conversely d(C-G)3 hexamers containing methylated cytidines were predominantly in the Z form (greater than 90%) [Tran-Dinh et al. (1984) Biochemistry 23, 1362; Cavaillès et al. (1984) J. Biomol. Struct. Dyn. 1, 1347-1371]. On the other hand, d(C-2aminoA-C-G-T-G) in which the d(2aminoA) X dT base pair forms three hydrogen bonds, was found to adopt the Z conformation in 4M NaCl solution which was not the case for d(C-A-C-G-T-G) (unpublished results). The present study shows that the B in equilibrium Z transition in solution is highly sequence-dependent and that correlation exists between the stability of the duplexes (essentially governed by the number of hydrogen bonds between complementary bases) and their ability to adopt the Z conformation.  相似文献   

10.
Proton NMR studies at 500 MHz in aqueous solution were carried out on the G-G chelated deoxytrinucleosidediphosphate platinum complex cis-Pt(NH3)2[d(GpCpG], on the uncoordinated trinucleotide d(GpCpG) and on the constituent monomers cis-Pt(NH3)2[d(Gp)]2, cis-Pt(NH3)2[d(pG)]2, d(Gp), d(pCp) and d(pG). Complete NMR spectral assignments are given and chemical shifts and coupling constants are analysed to obtain an impression of the detailed structure of d(GpCpG) and the distortion of the structure due to chelation with [cis-Pt(NH3)2]2+. Platination of the guanosine monophosphates affects the sugar conformational equilibrium to favour the N conformation of the deoxyribose ring. This feature is also apparent in ribose mononucleotides and is possibly caused by an increased anomeric effect. In cis-Pt(NH3)2[d(pG)]2 the phase angle of pseudorotation of the S-type sugar ring is 20 degrees higher than in 'free' d(pG) which might be an indication for an ionic interaction between the positive platinum and the negatively charged phosphate. It appears that d(GpCpG) reverts from a predominantly random coil to a normal right-handed B-DNA-like single-helical structure at lower temperatures, whereas the conformational features of cis-Pt(NH3)2[d(GpCpG)] are largely temperature-independent. In the latter compound much conformational freedom along the backbone angles is seen. The cytosine protons and deoxyribose protons exhibit almost no shielding effect as should normally be exerted by the guanine bases in stacking positions. This is interpreted in terms of a 'turning away' of the cytosine residue from both chelating guanines. Conformational features of cis-Pt(NH3)2[d(GpCpG)[ are compared with the 'bulge-out' of the ribose-trinucleotide m6(2)ApUpm6(2)A.  相似文献   

11.
The interaction of daunomycin with B and Z helices of a self-complementary DNA fragment d(CGm5CGCG) in solution was studied by 1H-NMR spectroscopy at 500 MHz. The results show that the B-Z transition kinetics is not affected by addition of daunomycin. Daunomycin binds exclusively to the B form of d(CGm5CGCG). Z exchanges with B while the latter also exchanges with the B duplex-daunomycin complexes.  相似文献   

12.
The 30 ribose proton resonances of the pentaribonucleoside tetraphosphate m6(2)AUm6(2)AUm6(2)A have been assigned unequivocally by means of spin-echo-correlated spectroscopy, 2D J-resolved spectroscopy and Nuclear Overhauser difference spectroscopy, carried out at 500 MHz. A detailed comparison of the conformational properties of the title compound with its constituent fragments m6(2)AUm6(2)AU, m6(2)AUm6(2)A, m6(2)AU and the relevant monomers is given. Chemical shift data indicate the existence of a doubly "bulged out" conformer, in which the two interior U-fragments are not involved in regular nearest neighbour stacking interactions. The coupling constants of the ribose-ring are interpreted in terms of the N/S equilibrium, and population distributions along the backbone angles beta and gamma are presented. The combined data suggest a strong similarity between the 5'-terminal triplets in m6(2)AUm6(2)AUm6(2)A, m6(2)AUm6(2)AU and m6(2)AUm6(2)A2.  相似文献   

13.
M H Sarma  G Gupta  R H Sarma 《Biochemistry》1986,25(12):3659-3665
Secondary structures of poly(dG).poly(dC) and poly(dG).poly(dm5C) in solution are determined by nuclear Overhauser effect (NOE) measurements on GH8-deuterated and -nondeuterated DNAs with low presaturation pulse lengths (10-25 ms) and low-power and prolonged accumulations in the range of 50,000-72,000 scans. Under these conditions, the NOE difference spectra were free from diffusion. Primary NOEs between base protons GH8/CH6 and sugar protons H1', H2'/H2', and H3' suggest that in poly(dG).poly(dC) both guanine and cytosine nucleotides adopt a C3'-endo, low anti X = 200-220 degrees conformation. Computer modeling of the NOE data enable identification for the first time, in terms of the geometry of the nucleotide repeat, handedness, and helix geometry, of the structure of poly(dG).poly(dC) to be the A form, and the derived structure for the polymer duplex is very close to the single crystal structure of the double-helical d-GGGGCCCC [McCall, M., Brown, T., & Kennard, O. (1985) J. Mol. Biol. 183, 385-396]. Similar nuclear Overhauser effect data on poly(dG).poly(dm5C) revealed that G and m5C adopt a C2'endo, anti X = 240-260 degrees conformation, which indicates that this DNA exhibits the B form in solution. In summary, the results presented in this paper demonstrate that methylation of cytosines in poly(dG).poly(dC) causes A----B transition in the molecule.  相似文献   

14.
Abstract

The hairpin form of the mismatched octamer d(m5C-G-m5C-G-T-G-m5C-G) was studied by means of NMR spectroscopy. In a companion study it is shown that the hairpin form of this DNA fragment consists of a structure with a stem of three Watson-Crick-type base pairs and a loop consisting of only two nucleotides. The non-exchangeable proton resonances were assigned by means of two-dimensional correlation spectroscopy and two-dimensional nuclear Overhauser effect spectroscopy. Proton-proton coupling constants were used for the conformational analysis of the deoxyribose ring and for some of the backbone torsion angles. From the two-dimensional NMR spectra and the coupling-constant analysis it is concluded that: (i) the stem of the hairpin exhibits B-DNA characteristics; (ii) the sugar rings are not conformationally pure, but display a certain amount of conformational flexibility; (iii) the stacking interaction in the stem of the hairpin is elongated from the 3′-side in a more or less regular fashion with the two loop nucleotides; (iv) at the 5′-side of the stem a stacking discontinuity occurs between the stem and the loop; (v) at the 5′-side of the stem the loop is closed by means of a sharp backbone turn which involves unusual γt and β+ torsion angles in residue dG(6).

The NMR results led to the construction of a hairpin-loop model which was energy-minimized by means of a molecular-mechanics program. The results clearly show that a DNA hairpin-loop structure in which the loop consists of only two nucleotides bridging the minor groove in a straightforward fashion, (i) causes no undue steric strain, and (ii) involves well-known conformational principles throughout the course of the backbone.

The hairpin form of the title compound is compared with the hairpin form of d(A-T-C-C-T- A-T4-T-A-G-G-A-T), in which the central -T4- part forms a loop of four nucleotides. Both models display similarities as far as stacking interactions are concerned.  相似文献   

15.
The hairpin form of the mismatched octamer d(m5C-G-m5C-G-T-G-m5C-G) was studied by means of NMR spectroscopy. In a companion study it is shown that the hairpin form of this DNA fragment consists of a structure with a stem of three Watson-Crick-type base pairs and a loop consisting of only two nucleotides. The non-exchangeable proton resonances were assigned by means of two-dimensional correlation spectroscopy and two-dimensional nuclear Overhauser effect spectroscopy. Proton-proton coupling constants were used for the conformational analysis of the deoxyribose ring and for some of the backbone torsion angles. From the two-dimensional NMR spectra and the coupling-constant analysis it is concluded that: (i) the stem of the hairpin exhibits B-DNA characteristics; (ii) the sugar rings are not conformationally pure, but display a certain amount of conformational flexibility; (iii) the stacking interaction in the stem of the hairpin is elongated from the 3'-side in a more or less regular fashion with the two loop nucleotides; (iv) at the 5'-side of the stem a stacking discontinuity occurs between the stem and the loop; (v) at the 5'-side of the stem the loop is closed by means of a sharp backbone turn which involves unusual gamma' and beta+ torsion angles in residue dG(6). The NMR results led to the construction of a hairpin-loop model which was energy-minimized by means of a molecular-mechanics program. The results clearly show that a DNA hairpin-loop structure in which the loop consists of only two nucleotides bridging the minor groove in a straightforward fashion, (i) causes no undue steric strain, and (ii) involves well-known conformational principles throughout the course of the backbone. The hairpin form of the title compound is compared with the hairpin form of d(A-T-C-C-T-A-T4-T-A-G-G-A-T), in which the central -T4- part forms a loop of four nucleotides. Both models display similarities as far as stacking interactions are concerned.  相似文献   

16.
The oligonucleotides d(m5CGGCm5CG), d(CBr8GGCCBr8G) and d(CGCGGC) have been prepared and studied by infrared spectroscopy. The three sequences contain two GC pairs which are out of purine-pyrimidine alternation with the rest of the sequence. From the IR data of the d(m5CGGCm5CG) hexamer, it is shown that all of the dG residues adopt a syn conformation. The marker IR bands for the C3' endo syn conformation are at 1410, 1354, 1320 and 925 cm-1 whereas those for the C2' endo anti conformation at 1420, 1374 and 890 cm-1 are clearly absent. This result implies that the two adjacent guanines of the d(m5CGGCm5CG) sequence are in syn conformation. It is suggested that duplex formation occurs in d(CGCGGC) films and that all of the guanines are in syn conformation. In contrast, the central non-brominated guanine of the d(CBr8GGCCBr8G) hexamer is found in anti conformation, as expected in a Z type structure of the non-alternating region.  相似文献   

17.
P A Mirau  D R Kearns 《Biochemistry》1984,23(23):5439-5446
One- and two-dimensional nuclear Overhauser effects (2D NOE) have been used to compare the conformational properties of 60-80 base pair long duplexes of the synthetic DNA polymer poly(dI-dC) with those of poly(dI-dbr5C) and poly(dG-dC) in the B and Z conformations. Cross peaks in the 2D NOE spectra arising from proton-proton dipolar interactions which are more or less independent of the DNA conformation are used to assign the spectra of these molecules. Other cross peaks are sensitive to the conformational details, and these are used to make deductions about the average conformation in solution. The proton-proton interactions that give rise to the cross peaks in the 2D NOE spectrum of poly(dI-dC) are indicative of a B family conformation and rule out the possibility of some alternative conformations, including A, Z, alternating B, and left-handed B-DNA. The spectra are similar to those obtained from B-form poly(dI-dbr5C) and poly(dG-dC) but different from Z-form poly(dG-dC). Taken together, these results indicate that the solution conformation of poly(dI-dC) is not unusual but more closely resembles that of other B-form DNAs.  相似文献   

18.
The deoxyoligonucleotide d(TGCA)3 is a candidate for exhibiting unusual conformations. Its 1H NMR spectrum under low salt conditions has been obtained at 400 MHz and assigned using two-dimensional NMR techniques. The sugar puckers and glycosidic torsions have been determined by inspecting the relative intensities of the intranucleotide NOEs and COSY crosspeaks. At low electrolyte concentration (100 mM NaCl) the molecule exists as a right-handed duplex with twelve Watson-Crick base-pairs and deoxyribose moieties assuming the O1'-endo to C1'-exo pucker.  相似文献   

19.
UV and CD data of the partially self-complementary heptadecadeoxynucleotide d(CGCGCGTTTTTCGCGCG), obtained as a function of temperature, salt and strand concentration, show that: at low NaCl and strand concentration the oligomer exhibits, on increasing the temperature, a biphasic thermal profile which is indicative of two structural transitions, from dimeric duplex to hairpin and from hairpin to coil; the loop stabilizes enthalpically both B and Z hairpin structures with respect to the corresponding unconstrained hexamer d(CGCGCG) by a few Kcal/mol; the oligomer undergoes a B-Z transition which appears to be complete, at 0 degree C, when induced by NaClO4; by contrast the B-Z transition induced by NaCl does not reach completeness even at salt saturation. The independence of the denaturation temperature, at high salt conditions, on the oligomer concentration indicates that the Z structure is present also in the hairpin.  相似文献   

20.
The double-helical conformations of d(m5-C-G-C-G-m5-C-G) in aqueous solution were studied by circular dichroism and 1H NMR spectroscopy. In 0.1 M NaCl, only the B form is detected whereas the Z form is strongly predominant in 3 M NaCl. In the presence of 2 M NaCl, two resonance signals corresponding to the B and Z duplexes were observed for each proton below 50 degrees C, indicating a slow exchange between B and Z. However, the B-Z exchange becomes intermediate or fast in the 55-80 degrees C temperature interval. By contrast the exchange between B helix and single-stranded (or coil) forms is much faster for the same temperature conditions. The Z form is only detectable when the coil form is practically absent. With decreasing temperature the B form decreases in favor of the Z form. From proton line-width measurements under various experimental conditions, it was also shown that Z exchanges only with B, while the latter also exchanges with the single-stranded form (S): Z in equilibrium B in equilibrium S. The enthalpy value is about 8 +/- 1 kcal/mol for the B-Z transition and about 40 +/- 2 kcal/mol for the B-S dissociation (2 M NaCl solution). The activation energy is about 47 +/- 2 kcal/mol for the Z----B and 39 +/- 2 kcal/mol for the B----Z reaction. Very good agreement between the experimental results and computed data (based on the above kinetic reaction model) was found for the B, Z, and coil proportions. The B-Z transition of methylated d(C-G)n oligomers is only possible when the Watson-Crick hydrogen bonds between the CG base pairs are firmly maintained; otherwise, the transformation from B to Z would not occur, and B-S dissociation would take place instead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号