首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D Cockayne  K R Cutroneo 《Biochemistry》1988,27(8):2736-2745
Nuclei were isolated from control and dexamethasone-treated (2 h) embryonic chick skin fibroblasts and transcribed in vitro. Nuclei isolated from dexamethasone-treated fibroblasts transcribed less pro alpha 1(I) and pro alpha 2(I) mRNAs but not beta-actin mRNA. Fibroblasts receiving dexamethasone and [5,6-3H]uridine also demonstrated decreased synthesis of nuclear type I procollagen mRNAs but not beta-actin mRNA. In fibroblasts treated with cycloheximide the newly synthesized nuclear type I procollagen mRNA species were markedly decreased. An enhanced inhibitory effect was observed when fibroblasts were treated with cycloheximide plus dexamethasone. Since the studies above demonstrate that active protein synthesis is required to maintain the constitutive expression of the type I procollagen genes, we determined if glucocorticoids regulate DNA-binding proteins with sequence specificity for the alpha 2(I) procollagen gene. Nuclear protein blots were probed with the 32P-end-labeled pBR322 vector DNA and 32P-end-labeled alpha 2(I) procollagen promoter containing DNA. Nonhistone proteins remained bound to labeled DNA at stringency washes of 0.05 and 0.1 M NaCl. As the ionic strength was increased to 0.2 and 0.3 M NaCl, the nonhistone-protein DNA binding was preferentially lost. Only the low molecular weight proteins remained bound to labeled DNA at the highest ionic strength, indicating nonspecific binding of these nuclear proteins. Dexamethasone treatment resulted in an increase of binding of nonhistone proteins to vector- and promoter-labeled DNAs over that observed in control fibroblasts at stringency washes of 0.05 and 0.1 M NaCl and to a lesser extent at 0.2 M NaCl. The binding specificities of nonhistone proteins for the alpha 2(I) procollagen promoter containing DNA were calculated. Three nonhistone DNA-binding proteins of Mr 90,000, 50,000, and 30,000 had altered specificities following dexamethasone treatment.  相似文献   

3.
4.
5.
6.
Fibroblasts from two lethal variants of osteogenesis imperfecta were shown to synthesize increased amounts of type IV procollagen. Previous studies established that one of these variants had a non-functional allele for the pro alpha 2 chain of type I procollagen, whereas the other pro alpha 2(I) allele contained a mutation leading to synthesis of shortened pro alpha 2(I) chains. In the two variants, the relative level of mRNA for pro alpha 1(IV) was 31 and 42% of the level of mRNA for pro alpha 1(I) chains. A value of less than 2% was found for a third lethal and four non-lethal variants of osteogenesis imperfecta. Immunofluorescent staining of fibroblasts from the two variants synthesizing increased amounts of type IV procollagen indicated that a homogeneous population of cells synthesized both type IV and type I procollagen. The results suggest that mutations in the type I procollagen genes that result in osteogenesis imperfecta can be associated with increased expression of the genes for type IV procollagen.  相似文献   

7.
8.
9.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

10.
11.
Tissue remodeling is an adaptive response to mechanical tension in the lung. However, the role of pulmonary fibroblasts in this response has not been well characterized. This study investigates the influence of extracellular matrix on the response of fibroblasts to mechanical strain. Cells were cultured on flexible-bottom surfaces coated with fibronectin, laminin, or elastin and exposed to strain. Under these conditions, fibroblasts align perpendicular to the force vector. This stimulus results in an increase in alpha(1)(I) procollagen mRNA in cells cultured on laminin or elastin but not fibronectin. Increased alpha(1)(I) procollagen mRNA was detected 6 h after exposure to strain and reached control levels by 72 h. [(3)H]proline incorporation into newly synthesized procollagen reflects changes in mRNA levels. Strained fibroblasts cultured on laminin or elastin incorporated 190 and 114%, respectively, more [(3)H]proline into procollagen than did unstrained cells. No difference was detected in strained fibroblasts cultured on fibronectin. These results suggest that fibroblasts respond to mechanical strain in vitro, and this response is signaled by cell-extracellular matrix interactions.  相似文献   

12.
NIH 3T3 cells that are transformed by the v-fos containing FBR proviral DNA show a selective increase in alpha 1 (III) collagen synthesis, increased levels of alpha 1(III) collagen RNA and an increased synthesis of this RNA.  相似文献   

13.
Excessive production of extracellular matrix is responsible for clinical manifestations of fibroproliferative disorders and drugs which can inhibit excessive synthesis of type I collagen are needed for the therapy. Several dicationic diphenylfurans were synthesized and were found to bind RNA. Two of these type compounds were able to reduce synthesis of type I collagen by human fibroblasts and human activated hepatic stellate cells (HSCs). Activated HSCs are responsible for collagen production in liver fibrosis. When added at 40 microM compound 588 reduced intracellular level and secretion of procollagen alpha1(I) by 50%, while compound 654 reduced these parameters by more than 80% at 20 microM. 654 also significantly reduced secretion of fibronectin. Toxic effects were observed at 80 microM for 588 and 40 microM for 654. 654 reduced expression of a reporter gene with collagen signal peptide, while expression of the same gene without signal peptide was unaffected. Also, expression of intracellular proteins tubulin and calnexin was unchanged. 654 accumulated inside the cell in the cytoplasm and did not change the steady-state level of collagen mRNAs. Treatment of cells with proteosome inhibitor MG132 did not change the inhibitory effect of 654, suggesting that 654 acts as suppressor of translation of proteins containing a signal peptide. Most secreted proteins of fibroblasts and activated HSCs are components of extracellular matrix. Therefore inhibition of their production, as shown here for procollagen alpha1(I) and fibronectin, may be a useful property of some of diphenylfurans, making these compounds a basis for development of antifibrotic drugs.  相似文献   

14.
Viral and cellular fos proteins: a comparative analysis   总被引:46,自引:0,他引:46  
T Curran  A D Miller  L Zokas  I M Verma 《Cell》1984,36(2):259-268
The FBJ murine osteosarcoma virus (FBJ-MuSV) induces osteosarcomas in mice and transforms fibroblasts in vitro. It contains an oncogene termed v-fos derived from a normal cellular gene by recombination with an associated helper virus. The product of the v-fos gene is a 55,000 dalton protein, p55v-fos. This protein was found in the nuclei of cells containing amplified levels of the v-fos gene, and also in the nuclei of virus-transformed cells. The c-fos protein was localized in the nuclei of normal mouse amnion cells and in the nuclei of cells transformed by a recombinant plasmid that expresses the c-fos gene product. However, p55c-fos undergoes more extensive post-translational modification in the nucleus than p55v-fos. Immunofluorescence data indicate that the level of p55c-fos in normal mouse amnion cells is similar to that found in fibroblasts transformed by the v-fos or c-fos proteins.  相似文献   

15.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

16.
Synthesis of type I procollagen was examined in fibroblasts from a proband with a lethal perinatal variant of osteogenesis imperfecta. After trypsin digestion of the type I procollagen, a portion of the alpha 1 (I) chains was recovered as disulfide-linked dimers. Digestion of the protein with vertebrate collagenase and mapping of cyanogen bromide peptides suggested that a new cysteine residue was present between residues 551 and 775 of the alpha 1 (I) chain. Sequencing of cloned cDNAs prepared using mRNA from the proband's fibroblasts demonstrated that some of the clones contained a single base mutation that converted the glycine codon in amino acid position 748 of the alpha 1 (I) chain to a cysteine codon. About 80% of the type I procollagen synthesized by the proband's fibroblasts had a decreased thermal stability. The results, therefore, were consistent with the conclusion that normal pro-alpha 1 (I) chains and pro-alpha 1 (I) chains containing a cysteine residue in the alpha chain domain were synthesized in about equal amounts and incorporated randomly into type I procollagen. However, only about 10% of the alpha 1 (I) chains generated by trypsin digestion were disulfide-linked. Further studies demonstrated a decreased rate of secretion of type I procollagen containing the new cysteine residue and decreased processing of the protein by procollagen N-proteinase in cultures of postconfluent fibroblasts. Both parents were phenotypically normal and their fibroblasts synthesized only normal type I procollagen. Therefore, the mutation in the proband was a sporadic one and is very likely to have caused the connective tissue fragility that produced the lethal phenotype.  相似文献   

17.
18.
Integrins can mediate the attachment of cells to collagen type I. In the present study we have investigated the possible differences in collagen type I recognition sites for the alpha 1 beta 1 and alpha 2 beta 1 integrins. Different cyanogen bromide (CB) fragments of the alpha 1 (I) collagen chain were used in cell attachment experiments with three rat cell types, defined with regard to expression of collagen binding integrins. Primary rat hepatocytes expressed alpha 1 beta 1, primary rat cardiac fibroblasts alpha 1 beta 1 and alpha 2 beta 1, and Rat-1 cells only alpha 2 beta 1. All three cell types expressed alpha 3 beta 1 but this integrin did not bind to collagen--Sepharose or to immobilized collagen type I in a radioreceptor assay. Hepatocytes and cardiac fibroblasts attached to substrata coated with alpha 1(I)CB3 and alpha 1(I)CB8; Rat-1 cells attached to alpha 1(I)CB3 but only poorly to alpha 1(I)CB8-coated substrata. Cardiac fibroblasts and Rat-1 cells spread and formed beta 1-integrin-containing focal adhesions when grown on substrata coated with native collagen or alpha 1(I)CB3; focal adhesions were also detected in cardiac fibroblasts cultured on alpha 1(I)CB8. The rat alpha 1 specific monoclonal antibody 3A3 completely inhibited hepatocyte attachment to alpha 1(I)CB3 and alpha 1(I)CB8, as well as the attachment of cardiac fibroblasts to alpha 1(I)CB8, but only partially inhibited the attachment of cardiac fibroblasts to alpha 1(I)CB3. 3A3 IgG did not inhibit the attachment of Rat-1 cells to collagen type I or to alpha 1(I)CB3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cultured fibroblasts were examined from a patient with a nonlethal form of osteogenesis imperfecta. As reported previously (Nicholls, A. C., Pope, F. M., and Schloon, H. (1979) Lancet 1, 1193), the cells synthesized and secreted a type I procollagen which lacked pro-alpha 2(I) chains and consisted of a trimer of pro-alpha 1(I) chains. No pro-alpha 2(I) chains were recovered from the medium under conditions in which nonhelical pro-alpha 1(I) and pro-alpha 2(I) chains were readily detected in the medium of normal fibroblasts incubated with the hydroxylase inhibitor, alpha, alpha'-dipyridyl. Examination of cellular proteins demonstrated that the fibroblasts synthesized both pro-alpha 1(I) and pro-alpha 2(I) chains. The cellular pro-alpha 2(I) chains did not, however, become disulfide-linked into dimers or trimers of pro-alpha chains. Since the association of pro-alpha chains during the biosynthesis of type I procollagen is directed by the conformation of the COOH-terminal propeptides, the data suggest that the pro-alpha 2(I) chains synthesized by the fibroblasts have a mutated structure in the COOH-terminal propeptides which markedly reduces their affinity for pro-alpha 1(I) chains. A further observation was that the ratio of newly synthesized pro-alpha (I):pro-alpha 2(I) chains in the patient's fibroblasts was 7.18 +/- 0.58 S.E. instead of the value of 2.25 +/- 0.16 S.E. seen in control fibroblasts. One possible explanation for the high ratio is that the proband is homozygous for a mutation altering the structure of the pro-alpha 2(I) chain and that a secondary effect of the structural mutation is a decreased rate of synthesis of pro-alpha 2(I) chains.  相似文献   

20.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号