首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reece KL  Moss RL 《Biochemistry》2008,47(18):5139-5146
Myocardial contraction is initiated when Ca2+ binds to site II of cardiac troponin C. This 12-residue EF-hand loop (NH2-DEDGSGTVDFDE-COOH) contains six residues (bold) that coordinate Ca2+ binding and six residues that do not appear to influence Ca2+ binding directly. We have introduced six single-cysteine substitutions (italics) within site II of cTnC to investigate whether these residues are essential for Ca2+ binding affinity in isolation and Ca2+ sensitivity of force development in single muscle fibers. Ca2+ binding properties of mutant proteins were examined in solution and after substitution into rat skinned soleus fibers. Except for the serine mutation, cysteine substitution had no effect on Ca2+ binding on cTnC in solution. However, as part of the myofilament, the threonine mutation reduced Ca2+ sensitivity while the phenylalanine mutation increased Ca2+ sensitivity. Analysis of the available crystal and NMR structures reveals specific structural mechanisms for these effects.  相似文献   

2.
A multi-compartment model was used to estimate Ca2+ gradients in a sarcomere of a cardiac myocyte. The mathematical model assumed Ca2+ release from the sarcoplasmic reticulum as a driving function, and calculated Ca2+ binding to myoplasmic buffers, Ca2+ uptake by the sarcoplasmic reticulum, and diffusion of Ca2+ (and the buffers). During the fast Ca2+ transient similar to those observed during a twitch, the model predicted a large Ca2+ gradient in the sarcomere. A trajectory of the instantaneous relation between spatially averaged concentrations of Ca2+ and the Ca2+-troponin complex showed a counterclockwise loop, indicating non-equilibrium Ca2+ binding to troponin. During slow changes in [Ca2+] with time to peaks of approximately 500 ms or longer, the gradient of [Ca2+] was largely dissipated and the apparent equilibrium of the Ca2+-troponin binding reaction was suggested with little hysteresis of the trajectory. We conclude that a steady-state relation between [Ca2+] and mechanical activity can be achieved uniformly in the sarcomere by slowing the rate of Ca2+ release from the sarcoplasmic reticulum.  相似文献   

3.
Effect of Ca2+ on binding of the calpains to calpastatin   总被引:1,自引:0,他引:1  
Autolyzed mu-calpain, unautolyzed mu-calpain, autolyzed m-calpain, and unautolyzed m-calpain (mu-calpain is the micromolar Ca2+-requiring proteinase, m-calpain is the millimolar Ca2+-requiring proteinase) were passed through a calpastatin-affinity column at different free Ca2+ concentrations, and binding of the calpains to calpastatin was compared with proteolytic activity of that calpain at each Ca2+ concentration. Unautolyzed m-calpain, autolyzed m-calpain, and autolyzed mu-calpain required less Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Unautolyzed mu-calpain, however, required slightly more Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Half-maximal binding of oxidatively inactivated mu- or m-calpain to calpastatin required approximately the same Ca2+ concentrations as half-maximal binding of unautolyzed mu- or m-calpain, respectively, to calpastatin. Binding of unautolyzed m-calpain and autolyzed mu-calpain to calpastatin occurred over a wide range of Ca2+ concentrations, and it seems likely that two or more Ca2+-binding sites with different Ca2+-binding constants are involved in binding of the calpains to calpastatin. Proteolytic activity occurs at different Ca2+ concentrations than calpastatin binding, suggesting a second set of Ca2+-binding sites associated with proteolytic activity. Third and fourth sets of Ca2+-binding sites may be involved in autolysis and in binding to phosphatidylinositol or cell membranes; these four Ca2+-dependent properties of the calpains may require the eight potential Ca2+-binding sites that amino acid sequences predict are present in the calpain molecules.  相似文献   

4.
The Ca2+ binding of an EDTA-free water-soluble (SM) and -insoluble (IM) organic matrix of the freshwater snail Biomphalaria glabrata was investigated, using a 45Ca2+ autoradiography after SDS-electrophoretical separation and a calcium binding assay. Electrophoresis of the SM showed a considerable amount of Alcian blue and Stains all positive material, regarded as glycosaminoglycans (GAGs) or proteoglycans (PGs). This part of the SM was slightly positive after 45Ca2+ autoradiography at pH 6.8. The Ca2+ binding increased, raising the pH to 7.4 and 8.0 and was especially strong when simulating the real conditions of the extrapallial space with a carbonate buffer of pH 7.4. The Ca2+ binding assay of the IM showed the same pH-dependency that was observed in the SM. The titration of the IM with Ca2+ at pH 8.0 lead to a dissociation constant of 7.5 x 10(-5) M. While Mg2+ displaced 45Ca2+ in the same way as nonradioactive Ca2+, an approximately 400-fold amount of Na+ was necessary to reduce the binding of 45Ca2+ to 50%. The Ca2+ binding of the organic matrix from the B. glabrata shell appears to be a process of low specificity, medium affinity and high pH-dependency. Apparently, acidic carbohydrate-rich PGs are the only calcium binding constituents of the organic shell matrix.  相似文献   

5.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

6.
The role of Ca2+ binding in the self-aggregation of laminin-nidogen complexes   总被引:11,自引:0,他引:11  
Laminin-nidogen complexes were found to aggregate in the presence of divalent cations in a manner dependent on ion concentration. This effect shows a selectivity for Ca2+, as half-maximal aggregation is achieved already at about 10 microM Ca2+, while Mg2+ induces aggregation at 10-fold higher ion concentrations and always to a lesser extent. When binding of Ca2+ to laminin-nidogen complexes was measured by equilibrium dialysis, a total of about 16 binding sites with dissociation constants in the range of 5-300 microM could be identified. At 50 microM Ca2+, where the aggregation is maximal, only two to three Ca2+ ions are bound to laminin-nidogen complexes, indicating that the aggregation reaction is induced by the binding of Ca2+ to a small number of sites and possibly to a single distinct site. Analysis of Ca2+ binding to various proteolytic fragments of laminin allowed the tentative localization of a high affinity binding site to a large fragment comprising two of the short arms connected by the central part of the laminin molecule.  相似文献   

7.
The possible structural changes in the major isotype of parvalbumin from the toad (Bufo bufo japonicus) skeletal muscle caused by Ca2+ and Mg2+ binding have been analyzed by microcalorimetric titrations. Parvalbumin was titrated with Ca2+ in both the absence and presence of Mg2+ and with Mg2+ in the absence of Ca2+, at pH 7.0, and at 5 degrees, 15 degrees, and 25 degrees C. The two sites in a molecule were equivalent on Mg2(+)-Ca2+ exchange, but distinguishable on Ca2+ and Mg2+ binding. The reactions of parvalbumin with Ca2+ are exothermic at every temperature in both the absence and presence of Mg2+, but those with Mg2+ are always endothermic except for the binding to site 1 at 25 degrees C. The magnitudes of the hydrophobic and internal vibrational contributions to the heat capacity and entropy changes of parvalbumin on Ca2+ and Mg2+ binding and Mg2(+)-Ca2+ exchange have been estimated by the empirical method of Sturtevant [Sturtevant, J. M. (1977) Proc. Natl Acad. Sci. USA 74, 2236-2240]. Although no major conformational changes were noted between Ca2(+)- and Mg2(+)-bound forms of toad parvalbumin, the conformational difference was larger in Ca2+ (or Mg2+) binding to site 1 than site 2. This may indicate that the metal-free form is much less stable than any form with Ca2+ (or Mg2+) bound at one site at least. On Mg2(+)-Ca2+ exchange, the vibrational as well as hydrophobic entropy is only slightly increased in a parallel manner. In contrast, on Ca2+ (or Mg2+) binding, the hydrophobic entropy increases but the vibrational entropy decreases; the former indicates the sequestering of nonpolar groups from the surface to the interior of a molecule, and the latter suggests that the overall structures are tightened on Ca2+ (or Mg2+) binding but loosened on Mg2(+)-Ca2+ exchange. Despite the clear distinctions in the thermodynamic features, the conformational changes of toad parvalbumin are essentially the same as those of the two isotypes of bullfrog parvalbumins on Ca2+ binding and Mg2(+)-Ca2+ exchange.  相似文献   

8.
Intracellular Ca2+ regulates the activity of the NCX (Na+/Ca2+ exchanger) through binding to the cytosolic CBD (Ca2+-binding domain) 1 and CBD2. In vitro studies of the structure and dynamics of CBD1 and CBD2, as well as studies of their kinetics and thermodynamics of Ca2+ binding, greatly enhanced our understanding of NCX regulation. We describe the fold of the CBDs in relation to other known structures and review Ca2+ binding of the different CBD variants from a structural perspective. We also report on new findings concerning Mg2+ binding to the CBDs and finally we discuss recent results on CBD1-CBD2 interdomain interactions.  相似文献   

9.
Recoverin is a Ca2+-regulated signal transduction modulator found in vertebrate retina that has been shown to undergo dramatic conformational changes upon Ca2+ binding to its two functional EF-hand motifs. To elucidate the differential impact of the N-terminal myristoylation as well as occupation of the two Ca2+ binding sites on recoverin structure and function, we have investigated a non-myristoylated E85Q mutant exhibiting virtually no Ca2+ binding to EF-2. Crystal structures of the mutant protein as well as the non-myristoylated wild-type have been determined. Although the non-myristoylated E85Q mutant does not display any functional activity, its three-dimensional structure in the presence of Ca2+ resembles the myristoylated wild-type with two Ca2+ but is quite dissimilar from the myristoylated E85Q mutant. We conclude that the N-terminal myristoyl modification significantly stabilizes the conformation of the Ca2+-free protein (i.e. the T conformation) during the stepwise transition toward the fully Ca2+-occupied state. On the basis of these observations, a refined model for the role of the myristoyl group as an intrinsic allosteric modulator is proposed.  相似文献   

10.
Ca2+ binding to calmodulin was measured in the presence of mastoparan or caldesmon fragment. Mastoparan and caldesmon fragment were used as model compounds of enzymes and cytoskeleton proteins, respectively, working as the target of calmodulin. Although the Ca2+ bindings of the two globular domains of calmodulin occur independently in the absence of the target peptide (or proteins), mastoparan and caldesmon fragment increased the affinity of Ca2+ and, at the same time, produced the positive cooperative Ca2+ bindings between the two domains. The result of Ca2+ binding was compared with 1H NMR spectra of calmodulin in the presence of equimolar concentration of mastoparan. It is known that a conformation change of the C-terminal half-region (C-domain) occurs by the Ca2+ binding to C-domain. A further change in conformation of C-domain was demonstrated by the Ca2+ binding to the N-terminal half-region (N-domain) in the presence of mastoparan. It indicates that the two domains of calmodulin get into communication with each other in the associated state with the target, and we concluded that the Ca2+ binding to the N-domain is responsive to the development of calmodulin function.  相似文献   

11.
Structural independence of the two EF-hand domains of caltractin   总被引:1,自引:0,他引:1  
Caltractin (centrin) is a member of the calmodulin subfamily of EF-hand Ca2+-binding proteins that is an essential component of microtubule-organizing centers in many organisms ranging from yeast and algae to humans. The protein contains two homologous EF-hand Ca2+-binding domains linked by a flexible tether; each domain is capable of binding two Ca2+ ions. In an effort to search for domain-specific functional properties of caltractin, the two isolated domains were subcloned and expressed in Escherichia coli. Ca2+ binding affinities and the Ca2+ dependence of biophysical properties of the isolated domains were monitored by UV, CD, and NMR spectroscopy. Comparisons to the corresponding results for the intact protein showed that the two domains function independently of each other in these assays. Titration of a peptide fragment from the yeast Kar1p protein to the isolated domains and intact caltractin shows that the two domains interact in a Ca2+-dependent manner, with the C-terminal domain binding much more strongly than the N-terminal domain. Measurements of the macroscopic Ca2+ binding constants show that only the N-terminal domain has sufficient apparent Ca2+ affinity in vitro (1-10 microm) to be classified as a traditional calcium sensor in signal transduction pathways. However, investigation of the microscopic Ca2+ binding events in the C-terminal domain by NMR spectroscopy revealed that the observed macroscopic binding constant likely results from binding to two sites with very different affinities, one in the micromolar range and the other in the millimolar range. Thus, the C-terminal domain appears to also be capable of sensing Ca2+ signals but is activated by the binding of a single ion.  相似文献   

12.
Calcium channel blockers bind with high affinity to sites on the voltage-sensitive Ca2+ channel. Radioligand binding studies with various Ca2+ channel blockers have facilitated identification and characterization of binding sites on the channel structure. In the present study we evaluated the relationship between the binding sites for the Ca2+ channel blockers on the voltage-sensitive Ca2+ channel from rabbit heart sarcolemma and rabbit skeletal muscle transverse tubules. [3H]PN200-110 binds with high affinity to a single population of sites on the voltage-sensitive Ca2+ channel in both rabbit heart sarcolemma and skeletal muscle transverse tubules. [3H]PN200-110 binding was not affected by added Ca2+ whereas EGTA and EDTA noncompetitively inhibited binding in both types of membrane preparations. EDTA was a more potent inhibitor of [3H]PN200-110 binding than EGTA. Diltiazem stimulates the binding of [3H]PN200-110 in a temperature-sensitive manner. Verapamil inhibited binding of [3H]PN200-110 to both types of membrane preparations in a negative manner, although this effect was of a complex nature in skeletal muscle transverse tubules. The negative effect of verapamil on [3H]PN200-110 binding in cardiac muscle was completely reversed by Ca2+. On the other hand, Ca2+ was without effect on the negative cooperativity seen between verapamil and [3H]PN200-110 binding in skeletal muscle transverse tubules. Since Ca2+ did not affect [3H]PN200-110 binding to membranes, we would like to suggest that Ca2+ is modulating the negative effect of verapamil on [3H]PN200-110 binding through a distinct Ca2+ binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It is presently unknown whether Ca2+ plays a role in the physiological control of Na+/K+-ATPase or sodium pump activity. Because the enzyme is exposed to markedly different intra- and extracellular Ca2+ concentrations, tissue homogenates or purified enzyme preparations may not provide pertinent information regarding this question. Therefore, the effects of Ca2+ on the sodium pump were examined with studies of [3H]ouabain binding and 86Rb+ uptake using viable myocytes isolated from guinea-pig heart and apparently maintaining ion gradients. In the presence of K+, a reduction of the extracellular Ca2+ increased specific [3H]ouabain binding observed at apparent binding equilibria: a half-maximal stimulation was observed when extracellular Ca2+ was lowered to about 50 microM. The change in [3H]ouabain binding was caused by a change in the number of binding sites accessible by ouabain instead of a change in their affinity for the glycoside. Ouabain-sensitive 86Rb+ uptake was increased by a reduction of extracellular Ca2+ concentration. Benzocaine in concentrations reported to reduce the rate of Na+ influx failed to influence the inhibitory effect of Ca2+ on glycoside binding. When [3H]ouabain binding was at equilibrium, the addition of Ca2+ decreased and that of EGTA increased the glycoside binding. Mn2+, which does not penetrate the cell membrane, had effects similar to Ca2+. In the absence of K+, cells lose their tolerance to Ca2+. Reducing Ca2+ concentration prevented the loss of rod-shaped cells but failed to affect specific [3H]ouabain binding observed in the absence of K+. These results indicate that a large change in extracellular Ca2+ directly affects the sodium pump in cardiac myocytes isolated from guinea pigs.  相似文献   

14.
Platelet membrane glycoproteins IIb and IIIa form a Ca2+-dependent heterodimer complex that contains binding sites for fibrinogen, von Willebrand factor, and fibronectin following platelet stimulation. We have studied the effect of Ca2+ on the stability of the IIb-IIIa complex using a IIb-IIIa complex-specific monoclonal antibody A2A9 to detect the presence of the complexes. Soluble IIb and IIIa interacted with A2A9-Sepharose only in the presence of Ca2+ with 50% IIb-IIIa binding requiring 0.4 microM Ca2+. In contrast, at 25 degrees C 125I-A2A9 binding to intact unstimulated platelets suspended in buffers containing EDTA or ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid was independent of the presence of Ca2+. However, the effect of Ca2+ chelators on 125I-A2A9 binding varied with temperature. At 37 degrees C, 125I-A2A9 binding to intact platelets became Ca2+-dependent with 50% binding requiring 0.4 microM Ca2+. This effect of temperature was not due to a change in platelet membrane fluidity because enrichment or depletion of platelet membrane cholesterol did not influence antibody binding. But, 125I-A2A9 binding to intact platelets at 25 degrees C did become Ca2+-dependent when the pH was increased above 7.4. Thus, at 1 nM Ca2+ and 25 degrees C, 50% antibody binding occurred at pH 9.0. Our studies demonstrate that Ca2+-dependent IIb-IIIa complexes are present on unstimulated platelets and that the Ca2+ binding sites responsible for the stability of these complexes are located on the external platelet surface. Our experiments also suggest that changes in platelet cytosolic Ca2+ do not regulate the formation of IIb-IIIa complexes.  相似文献   

15.
The integrin lymphocyte function-associated antigen-1 (LFA-1) expressed on T cells serves as a useful model for analysis of leukocyte integrin functional activity. We have assessed the role of divalent cations Mg2+, Ca2+, and Mn2+ in LFA-1 binding to ligand intercellular adhesion molecule-1 (ICAM-1) and induction of the divalent cation-dependent epitope recognized by mAb 24. Manganese strongly promoted both expression of the 24 epitope and T cell binding to ICAM-1 via LFA-1, suggesting that Mn2+ is able to directly alter the conformation of LFA-1 in a manner that favors ligand binding. Since Mn2+ also promotes functional activity of other integrins, parallels in mechanism of ligand binding may span the integrin family. In contrast, induction of 24 epitope expression by Mg2+ required removal of Ca2+ from T cell LFA-1 with EGTA. Furthermore, binding of mAb 24 to T cell LFA-1 in the presence of either Mn2+ or Mg2+ was found to be specifically inhibited by Ca2+, suggestive of a negative regulatory role for Ca2+ in the control of leukocyte integrin function. Analysis of T cell binding to ICAM-1 via LFA-1 in the presence of Mg2+ or Mn2+, confirmed that Ca2+ exerted inhibitory effects upon LFA-1 function. The implication of our findings is that Ca2+ bound with relatively high affinity to LFA-1 may serve to maintain an inactive state. Thus induction of function and 24 epitope expression may occur as a result of displacement of Ca2+ from leukocyte integrins or alternatively, such activators may be able to impose the required conformational change in the presence of bound Ca2+.  相似文献   

16.
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state.  相似文献   

17.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   

18.
Rat intestinal Golgi-enriched membrane fractions take up Ca2+ by a vitamin D-dependent process that has been shown to recover within 15 min of repletion of vitamin D-deficient animals with intravenous 1,25-dihydroxycholecalciferol. The present paper reports studies characterizing the Ca2+-binding sites of these membrane fractions. Equilibrium binding of Ca2+ at concentrations between 5 and 400 microM showed significant decreases at all concentrations in membranes derived from vitamin D-deficient animals when compared with normal control-diet-fed animals. The predominant class of binding sites had a relatively high affinity for Ca2+ (KD approx. 3 microM). Vitamin D-deficiency did not change the affinity of this class of site, but decreased the number from 347 +/- 26 to 168 +/- 50 nmol of Ca2+ bound/mg of protein (means +/- S.D.). Mg2+ inhibited binding only at low Ca2+ concentrations, and the characteristics of this binding suggested positive co-operativity between two binding sites. Equimolar concentrations of Zn2+, La3+, Pb2+ and Mn2+ inhibited Ca2+ binding by over 50%. Increased ionic strength decreased Ca2+ binding by no more than half. Binding was maximal at pH 7.5 and half-maximal at pH 6.3. The large number of binding sites with relatively high affinity for Ca2+ suggests that it is unlikely that this binding is to any specific protein or to non-specific sites present on many proteins, and that the most likely sites are lipid molecules.  相似文献   

19.
A LIM domain is a specialized double-zinc finger motif found in a variety of proteins. LIM domains are thought to function as molecular modules, mediating specific protein-protein interactions in cellular signaling. In a recent study, we have demonstrated that ENH, which has three consecutive LIM domains, acts as an adaptor protein for the formation of a functional PKCepsilon-ENH-N-type Ca2+ channel complex in neurons. Formation of this complex selectively recruits PKCepsilon to its specific substrate, N-type Ca2+ channels, and is critical for rapid and efficient potentiation of the Ca2+ channel activity by PKC in neurons. However, it is not clear whether changes in the local Ca2+ concentrations near the channel mouth may affect the formation of the triprotein complex. Furthermore, the molecular determinants for the interactions among these three proteins remain unknown. Biochemical studies were performed to address these questions. Within the physiological Ca2+ concentration range (0-300 microM), binding of ENH to the channel C-terminus was significantly increased by Ca2+, whereas increased Ca2+ levels led to dissociation of PKCepsilon from ENH. Mutagenesis studies revealed that the second LIM domain in ENH was primarily responsible for Ca2+-dependent binding of ENH to both the Ca2+ channel C-terminus and PKCepsilon. ENH existed as a dimer in vivo. PKCepsilon translocation inhibition peptide, which blocks the translocation of PKCepsilon from the cytosol to the membrane, inhibited the interaction between PKCepsilon and ENH. These results provide a molecular mechanism for how the PKCepsilon-ENH-N-type Ca2+ channel complex is formed and regulated, as well as potential drug targets to selectively disrupt the PKC signaling complex.  相似文献   

20.
The effect of Mg2+ on the Ca2+ binding to rabbit fast skeletal troponin C and the CA2+ dependence of myofibrillar ATPase activity was studied in the physiological state where troponin C was incorporated into myofibrils. The Ca2+ binding to troponin C in myofibrils was measured directly by 45Ca using the CDTA-treated myofibrils as previously reported (Morimoto, S. and Ohtsuki, I. (1989) J. Biochem. 105, 435-439). It was found that the Ca2+ binding to the low and high affinity sites of troponin C in myofibrils was affected by Mg2+ competitively and the Ca2(+)- and Mg2(+)-binding constants were 6.20 x 10(6) and 1.94 x 10(2) M-1, respectively, for the low affinity sites, and 1.58 x 10(8) and 1.33 x 10(3) M-1, respectively, for the high affinity sites. The Ca2+ dependence of myofibrillar ATPase was also affected by Mg2+, with the apparent Ca2(+)- and Mg2(+)-binding constants of 1.46 x 10(6) and 276 x 10(2) M-1, respectively, suggesting that the myofibrillar ATPase was modulated through a competitive action of Mg2+ on Ca2+ binding to the low affinity sites, though the Ca2+ binding to the low affinity sites was not simply related to the myofibrillar ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号