首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape   总被引:27,自引:0,他引:27  
Members of the vertebrate Wnt family have been subdivided into two functional classes according to their biological activities. Some Wnts signal through the canonical Wnt-1/wingless pathway by stabilizing cytoplasmic beta-catenin. By contrast other Wnts stimulate intracellular Ca2+ release and activate two kinases, CamKII and PKC, in a G-protein-dependent manner. Moreover, putative Wnt receptors belonging to the Frizzled gene family have been identified that preferentially couple to the two prospective pathways in the absence of ectopic Wnt ligand and that might account for the signaling specificity of the Wnt pathways. As Ca2+ release was the first described feature of the noncanonical pathway, and as Ca2+ probably plays a key role in the activation of CamKII and PKC, we have named this Wnt pathway the Wnt/Ca2+ pathway.  相似文献   

3.
Wnt ligands working through Frizzled receptors have a differential ability to stimulate release of intracellular calcium (Ca(2+)) and activation of protein kinase C (PKC). Since targets of this Ca(2+) release could play a role in Wnt signaling, we first tested the hypothesis that Ca(2+)/calmodulin-dependent protein kinase II (CamKII) is activated by some Wnt and Frizzled homologs. We report that Wnt and Frizzled homologs that activate Ca(2+) release and PKC also activate CamKII activity in Xenopus embryos, while Wnt and Frizzled homologs that activate beta-catenin function do not. This activation occurs within 10 min after receptor activation in a pertussis toxin-sensitive manner, concomitant with autophosphorylation of endogenous CamKII. Based on data that Wnt-5A and Wnt-11 are present maternally in Xenopus eggs, and activate CamKII, we then tested the hypothesis that CamKII participates in axis formation in the early embryo. Measurements of endogenous CamKII activity from dorsal and ventral regions of embryos revealed elevated activity on the prospective ventral side, which was suppressed by a dominant negative Xwnt-11. If this spatial bias in CamKII activity were involved in promoting ventral cell fate one might predict that elevating CamKII activity on the dorsal side would inhibit dorsal cell fates, while reducing CamKII activity on the ventral side would promote dorsal cell fates. Results obtained by expression of CamKII mutants were consistent with this prediction, revealing that CamKII contributes to a ventral cell fate.  相似文献   

4.
The Wnt signaling pathway is central to the development of all animals and to cancer progression, yet largely unknown are the pairings of secreted Wnt ligands to their respective Frizzled transmembrane receptors or, in many cases, the relative contributions of canonical (beta-catenin/LEF/TCF) versus noncanonical Wnt signals. Specifically, in the kidney where Wnt-4 is essential for the mesenchymal to epithelial transition that generates the tissue's collecting tubules, the corresponding Frizzled receptor(s) and downstream signaling mechanism(s) are unclear. In this report, we addressed these issues using Madin-Darby Canine Kidney (MDCK) cells, which are competent to form tubules in vitro. Employing established reporter constructs of canonical Wnt/beta-catenin pathway activity, we have determined that MDCK cells are highly responsive to Wnt-4, -1, and -3A, but not to Wnt-5A and control conditions, precisely reflecting functional findings from Wnt-4 null kidney mesenchyme ex vivo rescue studies. We have confirmed that Wnt-4's canonical signaling activity in MDCK cells is mediated by downstream effectors of the Wnt/beta-catenin pathway using beta-Engrailed and dnTCF-4 constructs that suppress this pathway. We have further found that MDCK cells express the Frizzled-6 receptor and that Wnt-4 forms a biochemical complex with the Frizzled-6 CRD. Since Frizzled-6 did not appear to transduce Wnt-4's canonical signal, data supported recently by Golan et al., there presumably exists another as yet unknown Frizzled receptor(s) mediating Wnt-4 activation of beta-catenin/LEF/TCF. Finally, we report that canonical Wnt/beta-catenin signals cells help maintain cell growth and survival in MDCK cells but do not contribute to standard HGF-induced (nonphysiologic) tubule formation. Our results in combination with work from Xenopus laevis (not shown) lead us to believe that Wnt-4 binds both canonical and noncanonical Frizzled receptors, thereby activating Wnt signaling pathways that may each contribute to kidney tubulogenesis.  相似文献   

5.
We have recently reported the chondrogenic effect of bone morphogenetic protein-2 (BMP-2) in high density cultures of the mouse multipotent mesenchymal C3H10T1/2 cell line and have shown the functional requirement of the cell-cell adhesion molecule N-cadherin in BMP-2-induced chondrogenesis in vitro (Denker, A. E., Nicoll, S. B., and Tuan, R. S. (1995) Differentiation 59, 25-34; Haas, A. R., and Tuan, R. S. (1999) Differentiation 64, 77-89). Furthermore, BMP-2 treatment also results in an increased protein level of beta-catenin, a known N-cadherin-associated Wnt signal transducer (Fischer, L., Haas, A., and Tuan, R. S. (2001) Signal Transduction 2, 66-78), suggesting functional cross-talk between the BMP-2 and Wnt signaling pathways. We have observed previously that BMP-2 treatment up-regulates expression of Wnt-3A in high density cultures of C3H10T1/2 cells. To assess the contribution of Wnt-3A to BMP-2-mediated chondrogenesis, we have generated C3H10T1/2 cell lines overexpressing Wnt-3A and various forms of glycogen synthase kinase-3beta (GSK-3beta), an immediate cytosolic component of the Wnt signaling pathway, and examined their response to BMP-2. We show that overexpression of either Wnt-3A or kinase-dead GSK-3beta enhances BMP-2-mediated chondrogenesis. Furthermore, Wnt-3A overexpression results in decreases in both N-cadherin and GSK-3beta protein levels, whereas Wnt-3A as well as kinase-dead GSK-3beta overexpression increase total and nuclear levels of both beta-catenin and LEF-1. Direct cross-talk between Wnts and BMP-2 was also indicated by the up-regulated interaction between beta-catenin and SMAD-4 in response to BMP-2. These results suggest that Wnt-3A acts in a manner opposite to that of other Wnts, such as Wnt-7A, which were previously identified as inhibitory to chondrogenesis, and is the first BMP-2-regulated, chondrogenesis-enhancing member of the Wnt family.  相似文献   

6.
When Wnts antagonize Wnts   总被引:7,自引:0,他引:7  
Secreted Wnt ligands appear to activate a variety of signaling pathways. Two papers in this issue now present genetic evidence that "noncanonical" Wnt signaling inhibits the "canonical" Wnt/beta-catenin pathway. Westfall et al. (2003a) show that zebrafish embryos lacking maternal Wnt-5 function are dorsalized due to ectopic activation of beta-catenin, whereas Topol et al. (2003) report that chondrogenesis in the distal mouse limb bud depends on inhibition of Wnt/beta-catenin signaling by a paralogue of Wnt-5. These studies present the first genetic confirmation of the previous hypothesis that vertebrate Wnt signaling pathways can act in an antagonistic manner.  相似文献   

7.
Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis   总被引:8,自引:0,他引:8  
Members of both the Wnt and bone morphogenetic protein (BMP) families of signaling molecules have been implicated in the regulation of cartilage development. A key component of the Wnt signaling pathway is the cytosolic protein, beta-catenin. We have recently shown that the chondrogenic activity of BMP-2 in vitro involves the action of the cell-cell adhesion protein, N-cadherin, which functionally complexes with beta-catenin. The aim of this study is to test the hypothesis that Wnts may be involved in BMP-2 induced chondrogenesis, using an in vitro model of high-density micromass cultures of the murine multipotent mesenchymal cell line, C3H10T1/2. Expression of a number of Wnt members was detected in these cultures, including Wnt-3A and Wnt-7A, whose levels were up- and downregulated, respectively, by BMP-2. To assess the functional involvement of Wnt signaling in BMP-2 induced chondrogenesis, cultures were treated with lithium chloride, a Wnt-7A mimetic that acts by inhibiting the serine/threonine phosphorylation activity of glycogen synthase kinase-3beta (GSK-3beta). Lithium treatment significantly inhibited BMP-2 stimulation of chondrogenesis as well as GSK-3beta enzymatic activity, and decreased the levels of N-cadherin protein and mRNA. Furthermore, lithium decreased BMP-2 upregulation of total and nuclear levels of LEF-1 and beta-catenin as well as their interaction during later chondrogenesis; similarly, the interaction of beta-catenin with N-cadherin was also decreased. Interestingly, lithium treatment did not affect the ability of BMP-2 to decrease ubiquitination of beta-catenin, although it did reduce the interaction of beta-catenin with GSK-3beta during late chondrogenesis (days 9-13). We suggest that the chondro-inhibitory effect of lithium on BMP-2 induced chondrogenesis indicates antagonism between lithium-like Wnts and BMP-2 during mesenchymal condensation.  相似文献   

8.

Background  

The Wnt signal transduction pathway is important in a wide variety of developmental processes as well as in the genesis of human cancer. Vertebrate Wnt pathways can be functionally separated into two classes, the canonical Wnt/beta-catenin pathway and the non-canonical Wnt/Ca2+ pathway. Supporting differences in Wnt signaling, gain of function of Wnt-1 in C57mg mouse mammary epithelial cells leads to their morphological transformation while loss of function of Wnt-5a leads to the same transformation. Many downstream target genes of the Wnt/beta-catenin pathway have been identified. In contrast, little is known about the Wnt/Ca2+ pathway and whether it regulates gene expression.  相似文献   

9.
Mutations in the presenilin 1 (PS1) gene are the most common genetic factor underlying the development of early onset familial Alzheimer's disease (FAD). Accumulating evidence has shown that FAD-linked mutations of PS1 enhance the generation of amyloid-beta (1-42) protein. Recently, beta-catenin has been shown to interact with PS1. beta-catenin is essential for the Wnt signalling pathway. However, the biological significance of the interaction between beta-catenin and PS1 in this signalling pathway remains to be clarified. In this study, we investigated the effect of FAD-linked PS1 (M146L) mutation in the Wnt signalling pathway using the conditioned medium containing Wnt-3A. The expression of mutated PS1 inhibited the Wnt-3A-induced accumulation of beta-catenin. Chase analysis of beta-catenin in Wnt-3A-stimulated cells following cycloheximide treatment revealed that PS1 mutation enhanced the generation of the higher molecular mass form of beta-catenin, most likely, ubiquitinated beta-catenin. In addition, the expression of mutated PS1 elevated the level of phosphorylated beta-catenin, which is targeted to the ubiquitin/proteasome pathway. Thus, it appears that PS1 (M146L) mutation down-regulates the Wnt-3A-induced accumulation of beta-catenin due to an increase in the level of phosphorylated beta-catenin.  相似文献   

10.
11.
Aberrant activation of the Wnt/beta-catenin signaling pathway is associated with numerous human cancers and often correlates with the overexpression or amplification of the c-myc oncogene. Paradoxical to the cellular transformation potential of c-Myc is its ability to also induce apoptosis. Using an inducible c-MycER expression system, we found that Wnt/beta-catenin signaling suppressed apoptosis by inhibiting c-Myc-induced release of cytochrome c and caspase activation. Both cyclooxygenase 2 and WISP-1 were identified as effectors of the Wnt-mediated antiapoptotic signal. Soft agar assays showed that neither c-Myc nor Wnt-1 alone was sufficient to induce cellular transformation, but that Wnt and c-Myc coordinated in inducing transformation. Furthermore, coexpression of Wnt-1 and c-Myc induced high-frequency and rapid tumor growth in nude mice. Extensive apoptotic bodies were characteristic of c-Myc-induced tumors, but not tumors induced by coactivation of c-Myc and Wnt-1, indicating that the antiapoptotic function of Wnt-1 plays a critical role in the synergetic action between c-Myc and Wnt-1. These results elucidate the molecular mechanisms by which Wnt/beta-catenin inhibits apoptosis and provide new insight into Wnt signaling-mediated oncogenesis.  相似文献   

12.
13.
A zebrafish maternal effect mutation, in the gene hecate, results in embryos that have defects in the formation of dorsoanterior structures and altered calcium release. hecate mutant embryos lack nuclear accumulation of beta-catenin and have reduced expression of genes specific to the dorsal organizer. We found that hecate mutant embryos exhibit a nearly 10-fold increase in the frequency of intracellular Ca2+ transients normally present in the enveloping layer during the blastula stages. Inhibition of Ca2+ release leads to ectopic expression of dorsal genes in mutant embryos suggesting that Ca2+ transients are important in mediating dorsal gene expression. Inhibition of Ca2+ release also results in the expression of dorsal-specific genes in the enveloping layer in a beta-catenin-independent manner, which suggests an additional function for the Ca2+ transients in this cellular layer. The mutant phenotype can be reversed by the expression of factors that activate Wnt/beta-catenin signaling, suggesting that the Wnt/beta-catenin pathway, at least as activated by an exogenous Wnt ligand, is intact in hec mutant embryos. Our results are consistent with a role for the hecate gene in the regulation of Ca2+ release during the cleavage stages, which in turn influences dorsal gene expression in both marginal cells along the dorsoventral axis and in the enveloping layer.  相似文献   

14.
15.
Increasingly complex: new players enter the Wnt signaling network   总被引:11,自引:0,他引:11  
Wnt proteins can activate different intracellular signaling cascades in various organisms by interacting with receptors of the Frizzled family. The first identified Wnt signaling pathway, the Wnt/beta-catenin pathway, has been studied in much detail and is highly conserved among species. As to non-canonical Wnt pathways, the current situation is more nebulous partly because the intracellular mediators of this pathway are not yet fully understood and, in some cases, even identified. However, there are increasing data that prove the existence of non-canonical Wnt signaling and demonstrate its involvement in different developmental processes. In vertebrates, Wnt-11 and Wnt-5A can activate the Wnt/JNK pathway, which resembles the planar cell polarity pathway in Drosophila. The Wnt/Ca(2+)-pathway has only been described in Xenopus and zebrafish so far and it is unclear whether it also exists in other organisms. Two recent papers provide us with new insight into non-canonical Wnt signaling by (1) presenting a new intracellular mediator of non-canonical signaling in Xenopus1 and (2) implicating the existence of an additional non-canonical Wnt signaling pathway in flies.  相似文献   

16.
Wnts are secreted signaling molecules that can transduce their signals through several different pathways. Wnt-5a is considered a noncanonical Wnt as it does not signal by stabilizing beta-catenin in many biological systems. We have uncovered a new noncanonical pathway through which Wnt-5a antagonizes the canonical Wnt pathway by promoting the degradation of beta-catenin. This pathway is Siah2 and APC dependent, but GSK-3 and beta-TrCP independent. Furthermore, we provide evidence that Wnt-5a also acts in vivo to promote beta-catenin degradation in regulating mammalian limb development and possibly in suppressing tumor formation.  相似文献   

17.
18.
The Wnt/beta-catenin pathway and p53 are very common targets for genetic alterations in colorectal cancer, and relationships between them have been reported. Here, we describe the relation between Wnt/beta-catenin signaling and the p53-related gene p73. p73, but not p53, activated a promoter containing the Tcf-binding sequence in Saos-2 cells, and the degree of activation was positively correlated with that on a p53-responsive promoter. Moreover, p73beta enhanced Wnt/beta-catenin signaling synergistically with Wnt-3a or exogenously expressed beta-catenin, unlike p53, and the enhancement was not caused by the accumulation of beta-catenin. These results show that the effects of p73 on Wnt/beta-catenin signaling differ from those of p53.  相似文献   

19.
20.
Convergent extension movements are the main driving force of Xenopus gastrulation. A fine-tuned regulation of cadherin-mediated cell-cell adhesion is thought to be required for this process. Members of the Wnt family of extracellular glycoproteins have been shown to modulate cadherin-mediated cell-cell adhesion, convergent extension movements, and cell differentiation. Here we show that endogenous Wnt/beta-catenin signaling activity is essential for convergent extension movements due to its effect on gene expression rather than on cadherins. Our data also suggest that XLEF-1 rather than XTCF-3 is required for convergent extension movements and that XLEF-1 functions in this context in the Wnt/beta-catenin pathway to regulate Xnr-3. In contrast, activation of the Wnt/Ca2+ pathway blocks convergent extension movements, with potential regulation of the Wnt/beta-catenin pathway at two different levels. PKC, activated by the Wnt/Ca2+ pathway, blocks the Wnt/beta-catenin pathway upstream of beta-catenin and phosphorylates Dishevelled. CamKII, also activated by the Wnt/Ca2+ pathway, inhibits the Wnt/beta-catenin signaling cascade downstream of beta-catenin. Thus, an opposing cross-talk of two distinct Wnt signaling cascades regulates convergent extension movements in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号