首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spindle checkpoint delays the metaphase to anaphase transition in response to defects in kinetochore-microtubule interactions in the mitotic apparatus (see [1] [2] [3] [4] for reviews). The Mad and Bub proteins were identified as key components of the spindle checkpoint through budding yeast genetics [5] [6] and are highly conserved [3]. Most of the spindle checkpoint proteins have been localised to kinetochores, yet almost nothing is known about the molecular events which take place there. Mad1p forms a tight complex with Mad2p [7], and has been shown to recruit Mad2p to kinetochores [8]. Similarly, Bub3p binds to Bub1p [9] and may target it to kinetochores [10]. Here, we show that budding yeast Mad1p has a regulated association with Bub1p and Bub3p during a normal cell cycle and that this complex is found at significantly higher levels once the spindle checkpoint is activated. We find that formation of this complex requires Mad2p and Mps1p but not Mad3p or Bub2p. In addition, we identify a conserved motif within Mad1p that is essential for Mad1p-Bub1p-Bub3p complex formation. Mutation of this motif abolishes checkpoint function, indicating that formation of the Mad1p-Bub1p-Bub3p complex is a crucial step in the spindle checkpoint mechanism.  相似文献   

2.
The spindle assembly checkpoint (SAC) ensures accurate chromosome segregation by delaying entry into anaphase until all sister chromatids have become bi‐oriented. A key component of the SAC is the Mad2 protein, which can adopt either an inactive open (O‐Mad2) or active closed (C‐Mad2) conformation. The conversion of O‐Mad2 into C‐Mad2 at unattached kinetochores is thought to be a key step in activating the SAC. The “template model” proposes that this is achieved by the recruitment of soluble O‐Mad2 to C‐Mad2 bound at kinetochores through its interaction with Mad1. Whether Mad1 has additional roles in the SAC beyond recruitment of C‐Mad2 to kinetochores has not yet been addressed. Here, we show that Mad1 is required for mitotic arrest even when C‐Mad2 is artificially recruited to kinetochores, indicating that it has indeed an additional function in promoting the checkpoint. The C‐terminal globular domain of Mad1 and conserved residues in this region are required for this unexpected function of Mad1.  相似文献   

3.
Several lines of evidence suggest that kinetochores are organizing centers for the spindle checkpoint response and the synthesis of a "wait anaphase" signal in cases of incomplete or improper kinetochore-microtubule attachment. Here we characterize Schizosaccharomyces pombe Bub3p and study the recruitment of spindle checkpoint components to kinetochores. We demonstrate by chromatin immunoprecipitation that they all interact with the central domain of centromeres, consistent with their role in monitoring kinetochore-microtubule interactions. Bub1p and Bub3p are dependent upon one another, but independent of the Mad proteins, for their kinetochore localization. We demonstrate a clear role for the highly conserved N-terminal domain of Bub1p in the robust targeting of Bub1p, Bub3p, and Mad3p to kinetochores and show that this is crucial for an efficient checkpoint response. Surprisingly, neither this domain nor kinetochore localization is required for other functions of Bub1p in chromosome segregation.  相似文献   

4.
The spindle checkpoint inhibits the metaphase to anaphase transition until all the chromosomes are properly attached to the mitotic spindle. We have isolated a Xenopus homologue of the spindle checkpoint component Bub1, and investigated its role in the spindle checkpoint in Xenopus egg extracts. Antibodies raised against Bub1 recognize a 150-kD phosphoprotein at both interphase and mitosis, but the molecular mass is reduced to 140 upon dephosphorylation in vitro. Bub1 is essential for the establishment and maintenance of the checkpoint and is localized to kinetochores, similar to the spindle checkpoint complex Mad1-Mad2. However, Bub1 differs from Mad1-Mad2 in that Bub1 remains on kinetochores that have attached to microtubules; the protein eventually dissociates from the kinetochore during anaphase. Immunodepletion of Bub1 abolishes the spindle checkpoint and the kinetochore binding of the checkpoint proteins Mad1, Mad2, Bub3, and CENP-E. Interestingly, reintroducing either wild-type or kinase-deficient Bub1 protein restores the checkpoint and the kinetochore localization of these proteins. Our studies demonstrate that Bub1 plays a central role in triggering the spindle checkpoint signal from the kinetochore, and that its kinase activity is not necessary for the spindle checkpoint in Xenopus egg extracts.  相似文献   

5.
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1- arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule- disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.  相似文献   

6.
We show that MAD3 encodes a novel 58-kD nuclear protein which is not essential for viability, but is an integral component of the spindle checkpoint in budding yeast. Sequence analysis reveals two regions of Mad3p that are 46 and 47% identical to sequences in the NH(2)-terminal region of the budding yeast Bub1 protein kinase. Bub1p is known to bind Bub3p (Roberts et al. 1994) and we use two-hybrid assays and coimmunoprecipitation experiments to show that Mad3p can also bind to Bub3p. In addition, we find that Mad3p interacts with Mad2p and the cell cycle regulator Cdc20p. We show that the two regions of homology between Mad3p and Bub1p are crucial for these interactions and identify loss of function mutations within each domain of Mad3p. We discuss roles for Mad3p and its interactions with other spindle checkpoint proteins and with Cdc20p, the target of the checkpoint.  相似文献   

7.
The kinetochore is a supramolecular structure essential for microtubule attachment and the mitotic checkpoint. Human blinkin/human Spc105 (hSpc105)/hKNL1 was identified originally as a mixed-lineage leukemia (MLL) fusion partner and later as a kinetochore component. Blinkin directly binds to several structural and regulatory proteins, but the precise binding sites have not been defined. Here, we report distinct and essential binding domains for Bub1 and BubR1 (here designated Bubs) at the N terminus of blinkin and for Zwint-1 and hMis14/hNsl1 at the C terminus. The minimal binding sites for Bub1 and BubR1 are separate but contain a consensus KI motif, KI(D/N)XXXF(L/I)XXLK. RNA interference (RNAi)-mediated replacement with mutant blinkin reveals that the Bubs-binding domain is functionally important for chromosome alignment and segregation. We also provide evidence that hMis14 mediates hNdc80 binding to blinkin at the kinetochore. The C-terminal fragment of blinkin locates at kinetochores in a dominant-negative fashion by displacing endogenous blinkin from kinetochores. This negative dominance is relieved by mutations of the hMis14 binding PPSS motif on the C terminus of blinkin or by fusion of the N sequence that binds to Bub1 and BubR1. Taken together, these results indicate that blinkin functions to connect Bub1 and BubR1 with the hMis12, Ndc80, and Zwint-1 complexes, and disruption of this connection may lead to tumorigenesis.  相似文献   

8.
The spindle assembly checkpoint (SAC) restrains anaphase until all chromosomes become bi-oriented on the mitotic spindle. The SAC protein Mad2 can fold into two distinct conformers, open (O) and closed (C), and can asymmetrically dimerize. Here, we describe a monoclonal antibody that specifically recognizes the dimerization interface of C-Mad2. This antibody revealed several conformation-specific features of Mad2 in human cells. Notably, we show that Mad2 requires association with Mad1 to adopt the closed conformation and that the activity of the Mad1:C-Mad2 complex undergoes regulation by p31comet-dependent 'capping'. Furthermore, C-Mad2 antibody microinjection caused an abrupt termination of the SAC and accelerated mitotic progression. Remarkably, microinjection of a Mad1-neutralizing antibody triggered a comparable mitotic acceleration. Our study provides direct in vivo evidence for the model that a kinetochore complex of Mad1:C-Mad2 acts as a template to sustain the SAC and it challenges the distinction between SAC and mitotic timer.  相似文献   

9.
Interaction between Mad2 and Cdc20 (cell division cycle 20) is a key event during spindle assembly checkpoint activation. In the past, an N-terminal peptide containing amino acid residues 111-150 of Cdc20 was shown to bind Mad2 much better than the full-length Cdc20 protein. Using co-localization, co-immunoprecipitation and peptide inhibition analysis with different deletion mutants of Cdc20, we identified another Mad2-binding domain on Cdc20 from amino acids 342-355 within the WD repeat region. An intervening region between these two domains interferes with its Mad2 binding when present individually with any of these two Mad2-binding sites. We suggest that these three domains together determine the overall strength of Mad2 binding with Cdc20. Functional analysis suggests that an optimum Mad2 binding efficiency of Cdc20 is required during checkpoint arrest and release. Further, we have identified a unique polyhistidine motif with metal binding property adjacent to this second binding domain that may be important for maintaining the overall conformation of Cdc20 for its binding to Mad2.  相似文献   

10.
Cdc2p is a cyclin-dependent kinase (CDK) essential for both mitotic and meiotic cell cycle progression in fission yeast. We have found that the spindle checkpoint kinase Bub1p becomes phosphorylated by Cdc2p during spindle damage in mitotic cells. Cdc2p directly phosphorylates Bub1p in vitro at the CDK consensus sites. A Bub1p mutant that cannot be phosphorylated by Cdc2p is checkpoint defective, indicating that Cdc2p-dependent Bub1p phosphorylation is required to activate the checkpoint after spindle damage. The kinase activity of Bub1p is required, but is not sufficient, for complete spindle checkpoint function. The role of Bub1p in maintaining centromeric localization of Rec8p during meiosis I is entirely dependent upon its kinase activity, suggesting that Bub1p kinase activity is essential for establishing proper kinetochore function. Finally, we show that there is a Bub1p-dependent meiotic checkpoint, which is activated in recombination mutants.  相似文献   

11.
The spindle checkpoint delays anaphase onset until all chromosomes have attached properly to the mitotic spindle. Checkpoint signal is generated at kinetochores that are not bound with spindle microtubules or not under tension. Unattached kinetochores associate with several checkpoint proteins, including BubR1, Bub1, Bub3, Mad1, Mad2, and CENP-E. I herein show that BubR1 is important for the spindle checkpoint in Xenopus egg extracts. The protein accumulates and becomes hyperphosphorylated at unattached kinetochores. Immunodepletion of BubR1 greatly reduces kinetochore binding of Bub1, Bub3, Mad1, Mad2, and CENP-E. Loss of BubR1 also impairs the interaction between Mad2, Bub3, and Cdc20, an anaphase activator. These defects are rescued by wild-type, kinase-dead, or a truncated BubR1 that lacks its kinase domain, indicating that the kinase activity of BubR1 is not essential for the spindle checkpoint in egg extracts. Furthermore, localization and hyperphosphorylation of BubR1 at kinetochores are dependent on Bub1 and Mad1, but not Mad2. This paper demonstrates that BubR1 plays an important role in kinetochore association of other spindle checkpoint proteins and that Mad1 facilitates BubR1 hyperphosphorylation at kinetochores.  相似文献   

12.
Kim HS  Park KH  Kim SA  Wen J  Park SW  Park B  Gham CW  Hyung WJ  Noh SH  Kim HK  Song SY 《Mutation research》2005,578(1-2):187-201
Since the underlying mechanism for the high incidence of aneuploidy in gastric cancer has not clarified, we screened 49 gastric cancers and five gastric cancer cell lines for mutations in the mitotic spindle checkpoint genes, Bub1 and Mad2, and we analyzed the functional consequences of these mutations. The presence of mutations in Bub1 and Mad2 coding sequences was primarily detected by RT-PCR-SSCP and subsequently confirmed by automatic sequencing of either the RT-PCR products and/or the PCR products from genomic DNA. Mad2 was mutated in 44.9% of gastric cancer tissues and one gastric cancer cell line, N87, but not Bub1. Of these, three mutational hotspots at codons 156, 165 and 182 were identified. Mutations at codons 165 and 182 led to amino acid substitutions, whereas the mutation at codon 156 was a silent one. Overexpression of mutant Mad2 in HeLa cells led to the appearance of aneuploid cells in the presence of nocodazole, and this indicated that these mutations caused a defect in MAD2 protein. Wild type and mutant MAD2 protein displayed distinct mobility on two-dimensional gel electrophoresis. Novel mutational hotspots in human Mad2 genes were discovered for the gastric cancers and these mutations caused the functional defects in the spindle checkpoint suggesting that these mutations might be involved in the development and progression of gastric cancer.  相似文献   

13.
We have measured the activity of the spindle checkpoint in null mutants lacking kinetochore activity in the yeast Saccharomyces cerevisiae. We constructed deletion mutants for nonessential genes by one-step gene replacements. We constructed heterozygous deletions of one copy of essential genes in diploid cells and purified spores containing the deletion allele. In addition, we made gene fusions for three essential genes to target the encoded proteins for proteolysis (degron alleles). We determined that Ndc10p, Ctf13p, and Cep3p are required for checkpoint activity. In contrast, cells lacking Cbf1p, Ctf19p, Mcm21p, Slk19p, Cse4p, Mif2p, Mck1p, and Kar3p are checkpoint proficient. We conclude that the kinetochore plays a critical role in checkpoint signaling in S. cerevisiae. Spindle checkpoint activity maps to a discreet domain within the kinetochore and depends on the CBF3 protein complex.  相似文献   

14.
The evolutionarily conserved spindle checkpoint is a key mechanism ensuring high-fidelity chromosome transmission. The checkpoint monitors attachment between kinetochores and mitotic spindles and the tension between sister kinetochores. In the absence of proper attachment or tension, the spindle checkpoint mediates cell cycle arrest prior to anaphase. Saccharomyces cerevisiae Mad1p is required for the spindle checkpoint and for chromosome transmission fidelity. Moreover, Mad1p associates with the nuclear pore complex (NPC) and is enriched at kinetochores upon checkpoint activation. Using partial mad1 deletion alleles we determined that the C-terminal half of Mad1p is necessary and sufficient for checkpoint activation in response to microtubule depolymerizing agents, high-fidelity transmission of a reporter chromosome fragment, and in vivo association with centromeres, but not for robust NPC association. Thus, spindle checkpoint activation and chromosome transmission fidelity correlate and these Mad1p functions likely involve kinetochore association but not robust NPC association. These studies are the basis for elucidating the role of protein complexes containing Mad1p in the spindle checkpoint pathway and in maintaining genome stability in S. cerevisiae and other systems.  相似文献   

15.
In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place.  相似文献   

16.
The mitotic spindle assembly checkpoint delays anaphase until all chromosomes achieve bipolar attachment to the spindle microtubules. The spindle assembly checkpoint protein BubR1 is thought to act by forming an inhibitory complex with Cdc20. We here identify two Cdc20 binding sites on BubR1. A strong Cdc20 binding site is located between residues 490 and 560, but mutations that disrupt Cdc20 binding to this region have no effect upon checkpoint function. A second Cdc20 binding site present between residues 1 and 477 is highly specific for Cdc20 already bound to Mad2. Mutation of a conserved lysine in this region weakened Cdc20 binding and correspondingly reduced checkpoint function. Our results indicate that there may be more than one checkpoint complex containing BubR1, Mad2, and Cdc20. They also lead us to propose that in vivo checkpoint inhibition of Cdc20 is a two-step process in which prior binding of Mad2 to Cdc20 is required to make Cdc20 sensitive to inhibition by BubR1. Thus, Mad2 and BubR1 must cooperate to inhibit Cdc20 activity.  相似文献   

17.
Human BUBR1 is a 120 kDa protein that plays a central role in the spindle assembly checkpoint (SAC), the evolutionary conserved and self-regulatory system of higher organisms that monitors and repairs defects in chromosome segregation in mitotic cells. BUBR1 is organised into several domains, with an N-terminal region responsible for its localisation into the kinetochore, the multi-component proteinaceous network that assembles onto chromosomes upon mitotic entry. We have expressed and purified uniformly-15N/13C N-terminal BUBR1 and assigned backbone and side-chain resonances bound to an unlabelled peptide from the protein Blinkin, an element essential for recruitment of BUBR1 to the kinetochore. These assignments provide insights on the Blinkin interaction interface and form the basis of the three-dimensional structure determination of a BUBR1-Blinkin complex.  相似文献   

18.
The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.  相似文献   

19.
The spindle checkpoint delays the metaphase-to-anaphase transition in response to spindle and kinetochore defects. Genetic screens in budding yeast identified the Mad and Bub proteins as key components of this conserved regulatory pathway. Here we present the fission yeast homologue of Mad3p. Cells devoid of mad3(+) are unable to arrest their cell cycle in the presence of microtubule defects. Mad3p coimmunoprecipitates Bub3p, Mad2p, and the spindle checkpoint effector Slp1/Cdc20p. We demonstrate that Mad3p function is required for the overexpression of Mad2p to result in a metaphase arrest. Mad1p, Bub1p, and Bub3p are not required for this arrest. Thus, Mad3p appears to have a crucial role in transducing the inhibitory "wait anaphase" signal to the anaphase-promoting complex (APC). Mad3-green fluorescent protein (GFP) is recruited to unattached kinetochores early in mitosis and accumulates there upon prolonged checkpoint activation. For the first time, we have systematically studied the dependency of Mad3/BubR1 protein recruitment to kinetochores. We find Mad3-GFP kinetochore localization to be dependent upon Bub1p, Bub3p, and the Mph1p kinase, but not upon Mad1p or Mad2p. We discuss the implications of these findings in the context of our current understanding of spindle checkpoint function.  相似文献   

20.
The inhibitor of apoptosis (IAP) family of proteins contains a subset of members characterized by the presence of highly conserved baculoviral IAP repeat (BIR) domains. Recent work has shown that some of these BIR-domain proteins play a prominent role in the regulation of cell division, in particular at the stage of chromosome segregation and cytokinesis. We and others have shown that the Schizosaccharomyces pombe BIR-domain protein, Bir1p/Pbh1p/Cut17p, is important for the regulation of mitosis. Here we further characterize S. pombe Bir1p using methods of cell biology and genetics. We show that Bir1p is dispersed throughout the nucleus during the cell cycle. In addition, a significant part of Bir1p is also detected at the kinetochores and the spindle midzone during mitosis and meiosis. Time-lapse microscopy studies suggest that Bir1p relocates from the kinetochores to the spindle at the end of anaphase A. Bir1p colocalizes with the S. pombe Aurora kinase homolog Aim1p, a protein essential for mitosis, at the kinetochores as well as the spindle midzone during mitosis, and functional Bir1p is essential for localization of Aim1p to the kinetochores and the spindle midzone. Analyses of bir1 conditional mutants revealed that Bir1p is essential for chromosome condensation during mitosis. In addition, anaphase cells show the presence of lagging chromosomes and a defect in spindle elongation. We conclude that Bir1p is important for multiple processes that occur during mitosis in S. pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号