首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laurdan (6-lauroyl-2-dimethylaminonaphthalene) fluorescence spectroscopy has been applied to probe the physical status of the thylakoid membrane upon conversion of violaxanthin to zeaxanthin. So far, only phospholipid-dominated membranes have been studied by this method and hereby we report the first use of laurdan in mono- and digalactosyldiacylglycerol-dominated membrane systems. The generalised polarisation (GP) of laurdan was used as a measure of the structural effect of xanthophyll cycle pigments in isolated spinach (Spinacia oleracea) thylakoids and in model membrane vesicles composed of chloroplast galactolipids. Higher GP values indicate a membrane in a more ordered structure, whereas lower GP values point to a membrane in a less ordered fluid phase. The method was used to probe the effect of violaxanthin and zeaxanthin in thylakoid membranes at different temperatures. At 4, 25 and 37 °C the GP values for dark-adapted thylakoids in the violaxanthin-form were 0.55, 0.28 and 0.26. After conversion of violaxanthin to zeaxanthin, at the same temperatures, the GP values were 0.62, 0.36 and 0.34, respectively. GP values increased gradually upon conversion of violaxanthin to zeaxanthin. Similar results were obtained in the liposomal systems in the presence of these xanthophyll cycle pigments. We conclude from these results that the conversion of violaxanthin to zeaxanthin makes the thylakoid membrane more ordered.  相似文献   

2.
Using DTT and iodoacetamide as a novel irreversible method to inhibit endogenous violaxanthin de-epoxidase, we found that violaxanthin could be converted into zeaxanthin from both sides of the thylakoid membrane provided that purified violaxanthin de-epoxidase was added. The maximum conversion was the same from both sides of the membrane. Temperature was found to have a strong influence both on the rate and degree of maximal violaxanthin to zeaxanthin conversion. Thus only 50% conversion of violaxanthin was detected at 4 °C, whereas at 25 °C and 37 °C the degree of conversion was 70% and 80%, respectively. These results were obtained with isolated thylakoids from non-cold acclimated leafs. Pigment analysis of sub-thylakoid membrane domains showed that violaxanthin was evenly distributed between stroma lamellae and grana partitions. This was in contrast to chlorophyll a and -carotene which were enriched in stroma lamellae fractions while chlorophyll b, lutein and neoxanthin were enriched in the grana membranes. In combination with added violaxanthin de-epoxidase we found almost the same degree of conversion of violaxanthin to zeaxanthin (73–78%) for different domains of the thylakoid membrane. We conclude that violaxanthin de-epoxidase converts violaxanthin in the lipid matrix and not at the proteins, that violaxanthin does not prefer one particular membrane region or one particular chlorophyll protein complex, and that the xanthophyll cycle pigments are oriented in a vertical manner in order to be accessible from both sides of the membrane when located in the lipid matrix.  相似文献   

3.
The xanthophyll cycle, its regulation and components   总被引:22,自引:0,他引:22  
During the last few years much interest has been focused on the photoprotective role of zeaxanthin. In excessive light zeaxanthin is rapidly formed in the xanthophyll cycle from violaxanthin, via the intermediate antheraxanthin, a reaction reversed in the dark. The role of zeaxanthin and the xanthophyll cycle in photoprotection, is based on fluorescence quenching measurements, and in many studies a good correlation to the amount of zeaxanthin (and antheraxanthin) has been found. Other suggested roles for the xanthophylls involve, protection against oxidative stress of lipids, participation in the blue light response, modulation of the membrane fluidity and regulation of abscisic acid synthesis. The enzyme violaxanthin de-epoxidase has recently been purified from spinach and lettuce as a 43-kDa protein. It was found as 1 molecule per 20–100 electron-transport chains. The gene has been cloned and sequenced from Lactuca sativa, Nicotiana tabacum and Arabidopsis thaliana. The transit peptide was characteristic of nuclear-encoded and lumen-localized proteins. The activity of violaxanthin de-epoxidase is controlled by the lumen pH. Thus, below pH 6.6 the enzyme binds to the thylakoid membrane. In addition ascorbate becomes protonated to ascorbic acid (pKa= 4.2) the true substrate (Km= 0.1 m M ) for the violaxanthin de-epoxidase. We present arguments for an ascorbate transporter in the thylakoid membrane. The enzyme zeaxanthin epoxidase requires FAD as a cofactor and appears to use ferredoxin rather than NADPH as a reductant. The zeaxanthin epoxidase has not been isolated but the gene has been sequenced and a functional protein of 72.5 kDa has been expressed. The xanthophyll cycle pigments are almost evenly distributed in the thylakoid membrane and at least part of the pigments appears to be free in the lipid matrix where we conclude that the conversion by violaxanthin de-epoxidase occurs.  相似文献   

4.
The violaxanthin cycle describes the reversible conversion of violaxanthin to zeaxanthin via the intermediate antheraxanthin. This light-dependent xanthophyll conversion is essential for the adaptation of plants and algae to different light conditions and allows a reversible switch of photosynthetic light-harvesting complexes between a light-harvesting state under low light and a dissipative state under high light. The photoprotective functions of zeaxanthin have been intensively studied during the last decade, but much less attention has been directed to the mechanism and regulation of xanthophyll conversion. In this review, an overview is given on recent progress in the understanding of the role of (i) xanthophyll binding by antenna proteins and of (ii) the lipid properties of the thylakoid membrane in the regulation of xanthophyll conversion. The consequences of these findings for the mechanism and regulation of xanthophyll conversion in the thylakoid membrane will be discussed.  相似文献   

5.
The light-dependent, cyclic changes of xanthophyll pigments: violaxanthin, antheraxanthin and zeaxanthin, called the xanthophyll cycle, have been known for about fifty years. This process was characterised for higher plants, several fern and moss species and in some algal groups. Two enzymes, violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZE), belonging to the lipocalin protein family, are engaged in the xanthophyll cycle. VDE requires for its activity ascorbic acid and reversed hexagonal structure formed by monogalactosyldiacylglycerol. ZE, postulated to be a flavoprotein, has not been purified yet and it is known from its gene sequence only. Zeaxanthin epoxidation is dependent on the reducing power of NADPH and presence of additional proteins. The xanthophyll cycle is postulated to play a role in many important physiological processes. Zeaxanthin, formed from violaxanthin under high light conditions, is thought to be a main photoprotector in autotrophic cells due to its ability to dissipate excess of absorbed light energy that can be measured as a non-photochemical quenching. In addition the zeaxanthin formation is important in protection of the thylakoid membranes against lipid peroxidation. Other postulated functions of the xanthophyll cycle, which include regulation of membrane physical properties, blue light reception and regulation of abscisic acid synthesis, are also discussed.  相似文献   

6.
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and factors controlling de-epoxidation of violaxanthin than a system composed only ofmonogalactosyldiacylglycerol and is commonly used in xanthophyll cycle studies. The activity of violaxanthin de-epoxidase (VDE) strongly depended on the ratio of monogalactosyldiacylglycerol to PtdCho in liposomes. The mathematical model of violaxanthin de-epoxidation was applied to calculate the probability of violaxanthin to zeaxanthin conversion at different phases of de-epoxidation reactions. Measurements of deepoxidation rate and EPR-spin label study at different temperatures revealed that dynamic properties of the membrane are important factors that might control conversion of violaxanthin to antheraxanthin. A model of the molecular mechanism of violaxanthin de-epoxidation where the reversed hexagonal structures (mainly created by monogalactosyldiacylglycerol) are assumed to be required for violaxanthin conversion to zeaxanthin is proposed. The presence of monogalactosyldiacylglycerol reversed hexagonal phase was detected in the PtdCho/monogalactosyldiacylglycerol liposomes membrane by 31P-NMR studies. The availability of violaxanthin for de-epoxidation is a diffusion-dependent process controlled by membrane fluidity. The significance of the presented results for understanding themechanism of violaxanthin de-epoxidation in native thylakoid membranes is discussed.  相似文献   

7.
Zeaxanthin, an important component in protection against overexcitation in higher plants, is formed from violaxanthin by the enzyme violaxanthin de-epoxidase. We have investigated factors that may control the maximal degree of conversion in the violaxanthin cycle. The conversion of violaxanthin to zeaxanthin in isolated spinach thylakoids was followed at different temperatures and in the presence of lipid packing modifiers. The maximum degree of conversion was found to be 35%, 70% and 80% at 4 degrees C, 25 degrees C and 37 degrees C respectively. In the presence of membrane modifying agents, known to promote non-lamellar structures (H(II)), such as linolenic acid the conversion increased, and the maximal level of violaxanthin de-epoxidation obtained was close to 100%. In contrast, substances promoting lamellar phases (L(alpha)), such as alpha-tocopherol and 8-cetylether (C(16)EO(8)), only 55% and 35% of the violaxanthin was converted at 25 degrees C, respectively. The results are interpreted in light of the lipid composition of the thylakoid membrane, and we propose a model where a negative curvature elastic stress in the thylakoid lipid bilayer is required for violaxanthin de-epoxidase activity. In this model zeaxanthin with its longer hydrophobic stretch is proposed to promote lamellar arrangements of the membrane. As a result, zeaxanthin relieves the curvature elastic stress, which in turn leads to inactivation of violaxanthin de-epoxidase.  相似文献   

8.
Zeaxanthin, an important component in protection against overexcitation in higher plants, is formed from violaxanthin by the enzyme violaxanthin de-epoxidase. We have investigated factors that may control the maximal degree of conversion in the violaxanthin cycle. The conversion of violaxanthin to zeaxanthin in isolated spinach thylakoids was followed at different temperatures and in the presence of lipid packing modifiers. The maximum degree of conversion was found to be 35%, 70% and 80% at 4 °C, 25 °C and 37 °C respectively. In the presence of membrane modifying agents, known to promote non-lamellar structures (HII), such as linolenic acid the conversion increased, and the maximal level of violaxanthin de-epoxidation obtained was close to 100%. In contrast, substances promoting lamellar phases (Lα), such as α-tocopherol and 8-cetylether (C16EO8), only 55% and 35% of the violaxanthin was converted at 25 °C, respectively. The results are interpreted in light of the lipid composition of the thylakoid membrane, and we propose a model where a negative curvature elastic stress in the thylakoid lipid bilayer is required for violaxanthin de-epoxidase activity. In this model zeaxanthin with its longer hydrophobic stretch is proposed to promote lamellar arrangements of the membrane. As a result, zeaxanthin relieves the curvature elastic stress, which in turn leads to inactivation of violaxanthin de-epoxidase.  相似文献   

9.
The xanthophyll cycle is a photoprotective mechanism operating in the thylakoid membranes of all higher plants, ferns, mosses and several algal groups. The occurrence of inverted hexagonal domains of monogalactosyldiacylglycerol (MGDG) in the membrane is postulated as an essential factor involved in violaxanthin de-epoxidation. The violaxanthin de-epoxidation was investigated in high-light illuminated Lemna trisulca at three temperatures (4, 12, and 25°C). The temperature dependence of this reaction was compared with kinetics of violaxanthin de-epoxidation at the same temperatures in MGDG micelles and in phosphatidylcholine (PC)–MGDG unilamellar liposomes. In both model systems and in the illuminated plants, a decrease in temperature resulted in lower zeaxanthin production. We found that the presence of MGDG in PC liposomes was necessary for the de-epoxidation reaction. With the increase in MGDG proportion in liposomes, the percentage of transformed violaxanthin was also increasing. We suggest that the violaxanthin de-epoxidation takes place within lipid matrix of the thylakoid membranes inside the MGDG-rich domains. Presence of the reversed hexagonal phase in the thylakoid membranes has been already reported in our previous papers and by other authors using 31P-NMR and freeze-fracturing techniques.  相似文献   

10.
Summary Leaves from two species, Euonymus kiautschovicus and Arctostaphylos uva-ursi, with a variety of different orientations and exposures, were examined in the field with regard to the xanthophyll cycle (the interconversion of three carotenoids in the chloroplast thylakoid membranes). East-, south-, and west-facing leaves of E. kiautschovicus were sampled throughout the day and all exhibited a pronounced and progressive conversion of violaxanthin to zeaxanthin, followed by a reconversion of zeaxanthin to violaxanthin later in the day. Maximal levels of zeaxanthin and minimal levels of violaxanthin were observed at the time when each leaf (orientation) received the maximum incident light, which was in the morning in east-facing, midday in southfacing, and in the afternoon in west-facing leaves. A very slight degree of hysteresis in the removal of zeaxanthin compared to its formation with regard to incident light was observed. Leaves with a broader range of orientations were sampled from A. uva-ursi prior to sunrise and at midday. All of the examined pigments (carotenoids and chlorophylls) increased somewhat per unit leaf area with increasing total daily photon receipt. The sum of the carotenoids involved in the xanthophyll cycle, violaxanthin + antheraxanthin + zeaxanthin, increased more strongly with increasing growth light than any other pigment. In addition, the amounts of zeaxanthin present at midday also increased markedly with increasing total daily photon receipt. The percentage of the xanthophyll cycle that was converted to zeaxanthin (and antheraxanthin) at peak irradiance was very large (approximately 80%) in the leaves of both E. kiautschovicus and A. uva-ursi. The daily changes in the components of the xanthophyll cycle that paralleled the daily changes in incident light in the leaves of E. kiautschovicus, and the increasing levels of the xanthophyll cycle components with total daily photon receipt in the leaves of A. uva-ursi, are both consistent with the involvement of zeaxanthin (i.e. the xanthophyll cycle) in the photoprotection of the photosynthetic apparatus against damage due to excessive light.Abbreviations A antheraxanthin - EPS epoxidation state of the xanthophyll cycle=(V+0.5A)/(V+A+Z) - PFD photon flux density (400–700 nm) - PFDi photon flux density incident upon the upper leaf surface - Tair air temperature - TL leaf temperature - V violaxanthin - Z zeaxanthin  相似文献   

11.
Peter Jahns  Sandra Heyde 《Planta》1999,207(3):393-400
The de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle of higher plants is controlled by the pH of the thylakoid lumen. The influence of N,N′-dicyclohexylcarbodiimide (DCCD) on the pH dependence of the de-epoxidation reactions has been investigated in isolated pea thylakoids. In the presence of DCCD, the decrease in de-epoxidase activity at increasing pH was found to be shifted by about 0.3 pH units to more-alkaline pH values. This was paralleled by a less-pronounced cooperativity for the pH dependence of de-epoxidation. Comparative studies with antenna-depleted thylakoids from plants grown in intermittent light and with unstacked thylakoids indicated that binding of DCCD to antenna proteins is most probably not responsible for the altered pH dependence. Analyses of the zeaxanthin content of different antenna subcomplexes showed that the DCCD-induced de-epoxidation at high pH leads to zeaxanthin formation in all antenna proteins from both photosystems. Our data support the view that DCCD binding to the violaxanthin de-epoxidase may be responsible for the altered pH dependence. Received: 4 July 1998 / Accepted: 9 September 1998  相似文献   

12.
Macko S  Wehner A  Jahns P 《Planta》2002,216(2):309-314
The enzyme violaxanthin de-epoxidase (VxDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of membrane-bound violaxanthin (Vx) to zeaxanthin. De-epoxidation from the opposite, stroma side of the membrane has been investigated in the npq1 mutant from Arabidopsis thaliana (L.) Heynh. - which lacks VxDE - by adding partially purified VxDE from spinach thylakoids. The accessibility of Vx to the exogenously added enzyme (exoVxDE) and the kinetics of Vx conversion by the exoVxDE in thylakoids from npq1 plants were very similar to the characteristics of Vx conversion by the endogenous enzyme (endoVxDE) in thylakoids from wild-type plants. However, the conversion of Vx by exoVxDE was clearly retarded at lower temperatures when compared with the reaction catalyzed by endoVxDE. Since the exoVxDE - in contrast to the endoVxDE - has no access to the stacked regions of the membrane, where the xanthophylls bound to photosystem II are located, these results support the assumption of pronounced diffusion of xanthophylls within the thylakoid membrane.  相似文献   

13.
The molecular configuration of the xanthophyll cycle carotenoids, violaxanthin and zeaxanthin, was studied in various isolated photosystem II antenna components in comparison to intact photosystem II membranes using resonance Raman combined with low-temperature absorption spectroscopy. The molecular configurations of zeaxanthin and violaxanthin in thylakoids and isolated photosystem II membranes were found to be the same within an isolated oligomeric LHCII antenna, confirming our recent conclusion that these molecules are not freely located in photosynthetic membranes (Ruban, A. V., Pascal, A. A., Robert, B., and Horton, P. (2001) J. Biol. Chem. 276, 24862-24870). In contrast, xanthophyll cycle carotenoids bound to LHCII trimers had largely lost their in vivo configuration, suggesting their partial dissociation from the binding locus. Violaxanthin and zeaxanthin associated with the minor antenna complexes, CP26 and CP29, were also found to be in a relaxed configuration, similar to that of free pigment. The origin of the characteristic C-H vibrational bands of violaxanthin and zeaxanthin in vivo is discussed by comparison with those of neoxanthin and lutein in oligomeric and trimeric LHCII respectively.  相似文献   

14.
The xanthophyll composition of the light-harvesting chlorophyll a/b proteins of photosystem II (LHCII) has been determined for spinach (Spinacia oleracea L.) leaves after dark adaptation and following illumination under conditions optimized for conversion of violaxanthin into zeaxanthin. Each of the four LHCII components was found to have a unique xanthophyll composition. The major carotenoid was lutein, comprising 60% of carotenoid in the bulk LHCIIb and 35 to 50% in the minor LHCII components LHCIIa, LHCIIc, and LHCIId. The percent of carotenoid found in the xanthophyll cycle pigments was approximately 10 to 15% in LHCIIb and 30 to 40% in LHCIIa, LHCIIc, and LHCIId. The xanthophyll cycle was active for the pigments bound to all of the LHCII components. The extent of deepoxidation for complexes prepared from light-treated leaves was 27, 65, 69, and 43% for LHCIIa, -b, -c, and -d, respectively. These levels of conversion of violaxanthin to zeaxanthin were found in LHCII prepared by three different isolation procedures. It was estimated that approximately 50% of the zeaxanthin associated with photosystem II is in LHCIIb and 30% is associated with the minor LHCII components.  相似文献   

15.
The de-epoxidation of violaxanthin to antheraxanthin (Anth) and zeaxanthin (Zeax) in the xanthophyll cycle of higher plants and the generation of nonphotochemical fluorescence quenching in the antenna of photosystem II (PSII) are induced by acidification of the thylakoid lumen. Dicyclohexylcarbodiimide (DCCD) has been shown (a) to bind to lumen-exposed carboxy groups of antenna proteins and (b) to inhibit the pH-dependent fluorescence quenching. The possible influence of DCCD on the de-epoxidation reactions has been investigated in isolated pea (Pisum sativum L.) thylakoids. The Zeax formation was found to be slowed down in the presence of DCCD. The second step (Anth → Zeax) of the reaction sequence seemed to be more affected than the violaxanthin → Anth conversion. Comparative studies with antenna-depleted thylakoids from plants grown under intermittent light and with unstacked thylakoids were in agreement with the assumption that binding of DCCD to antenna proteins is probably responsible for the retarded kinetics. Analyses of the DCCD-induced alterations in different antenna subcomplexes showed that Zeax formation in the PSII antenna proteins was predominantly influenced by DCCD, whereas Zeax formation in photosystem I was nearly unaffected. Our data support the suggestion that DCCD binding to PSII antenna proteins is responsible for the observed alterations in xanthophyll conversion.  相似文献   

16.
The xanthophyll cycle has a major role in protecting plants from photooxidative stress, although the mechanism of its action is unclear. Here, we have investigated Arabidopsis plants overexpressing a gene encoding beta-carotene hydroxylase, containing nearly three times the amount of xanthophyll cycle carotenoids present in the wild-type. In high light at low temperature wild-type plants exhibited symptoms of severe oxidative stress: lipid peroxidation, chlorophyll bleaching, and photoinhibition. In transformed plants, which accumulate over twice as much zeaxanthin as the wild-type, these symptoms were significantly ameliorated. The capacity of non-photochemical quenching is not significantly different in transformed plants compared with wild-type and therefore an enhancement of this process cannot be the cause of the stress tolerant phenotype. Rather, it is concluded that it results from the antioxidant effect of zeaxanthin. 80-90% of violaxanthin and zeaxanthin in wild-type and transformed plants was localized to an oligomeric LHCII fraction prepared from thylakoid membranes. The binding of these pigments in intact membranes was confirmed by resonance Raman spectroscopy. Based on the structural model of LHCII, we suggest that the protein/lipid interface is the active site for the antioxidant activity of zeaxanthin, which mediates stress tolerance by the protection of bound lipids.  相似文献   

17.
The xanthophyll cycle is one of the mechanisms protecting the photosynthetic apparatus against the light energy excess. Its action is still not well understood on the molecular level.Our model makes it possible to follow independently the kinetics of the two de-epoxidation steps occurring in the xanthophyll cycle: the conversion of violaxanthin into antheraxanthin and the conversion of antheraxanthin into zeaxanthin. Using a simple form of the transition rates of these two conversions, we model the time evolution of the concentration pattern of violaxanthin, antheraxanthin and zeaxanthin during the de-epoxidation process. The model has been applied to describe the reactions of de-epoxidation in a system of liposome membranes composed of phosphatidylcholine and monogalactosyldiacylglycerol. Results obtained within the model fit very well with the experimental data. Values of the transition probabilities of the violaxanthin conversion into antheraxanthin and the antheraxanthin conversion into zeaxanthin calculated by means of the model indicate that the first stage of the de-epoxidation process is much slower than the second one.  相似文献   

18.
Laurdan is a fluorescent probe that detects changes in membrane phase properties through its sensitivity to the polarity of its environment in the bilayer. Variations in membrane water content cause shifts in the laurdan emission spectrum, which are quantified by calculating the generalized polarization (GP). We tested whether laurdan fluorescence could be used to distinguish differences in phospholipid order from changes in membrane fluidity by examining the temperature dependence of laurdan GP and fluorescence anisotropy in dipalmitoylphosphatidylcholine (DPPC) vesicles. The phase transition from the solid ordered phase to the liquid disordered phase was observed as a decrease in laurdan GP values from 0.7 to −0.14 and a reduction in anisotropy from 0.25 to 0.12. Inclusion of various amounts of cholesterol in the membranes to generate a liquid ordered phase caused an increase in the apparent melting temperature detected by laurdan GP. In contrast, cholesterol decreased the apparent melting temperature estimated from anisotropy measurements. Based on these results, it appeared that laurdan anisotropy detected changes in membrane fluidity while laurdan GP sensed changes in phospholipid order. Thus, the same fluorescent probe can be used to distinguish effects of perturbations on membrane order and fluidity by comparing the results of fluorescence emission and anisotropy measurements.  相似文献   

19.
K K Niyogi  A R Grossman    O Bjrkman 《The Plant cell》1998,10(7):1121-1134
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy.  相似文献   

20.
Xanthophylls have a crucial role in the structure and function of the light harvesting complexes of photosystem II (LHCII) in plants. The binding of xanthophylls to LHCII has been investigated, particularly with respect to the xanthophyll cycle carotenoids violaxanthin and zeaxanthin. It was found that most of the violaxanthin pool was loosely bound to the major complex and could be removed by mild detergent treatment. Gentle solubilization of photosystem II particles and thylakoids allowed the isolation of complexes, including a newly described oligomeric preparation, enriched in trimers, that retained all of the in vivo violaxanthin pool. It was estimated that each LHCII monomer can bind at least one violaxanthin. The extent to which different pigments can be removed from LHCII indicated that the relative strength of binding was chlorophyll b > neoxanthin > chlorophyll a > lutein > zeaxanthin > violaxanthin. The xanthophyll binding sites are of two types: internal sites binding lutein and peripheral sites binding neoxanthin and violaxanthin. In CP29, a minor LHCII, both a lutein site and the neoxanthin site can be occupied by violaxanthin. Upon activation of the violaxanthin de-epoxidase, the highest de-epoxidation state was found for the main LHCII component and the lowest for CP29, suggesting that only violaxanthin loosely bound to LHCII is available for de-epoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号