共查询到20条相似文献,搜索用时 15 毫秒
1.
David A. Phoenix 《FEMS immunology and medical microbiology》1996,16(2):77-82
Abstract Within gram-negative bacteria such as Escherichia coli , the outer membrane porins provide a relatively non-specific uptake route which is utilised by a wide range of solutes including many antibiotics. Understanding the targeting and membrane assembly of these proteins is therefore of importance and this mini review aims to discuss this process in light of present knowledge. 相似文献
2.
Efficient in vivo translocation of the precursor of Escherichia coli outer membrane protein PhoE across the inner membrane is shown to depend on SecB protein. A set of mutants, carrying internal deletions in the phoE gene, was used to locate a possible SecB-binding site and/or a site that makes the protein dependent on SecB for export. Except for two small mutant PhoE proteins, the in vivo and in vitro translocation of all mutant proteins was more efficient in the presence of SecB. The interaction of SecB protein with wild-type and mutant PhoE proteins, synthesized in vitro, was further studied in co-immunoprecipitation experiments with anti-SecB protein serum. The efficiencies of co-immunoprecipitation of precursor and mature PhoE were very similar, indicating the absence of a SecB-binding site in the signal sequence. Moreover, all mutant proteins with deletions in the mature moiety of the PhoE protein were co-immunoprecipitated in these assays, albeit mostly with reduced efficiency. Taken together, these results indicate the existence of multiple SecB-binding sites in the mature portion of the PhoE protein. 相似文献
3.
Insertion mutagenesis on a cell-surface-exposed region of outer membrane protein PhoE of Escherichia coli K-12 总被引:2,自引:0,他引:2
Amino acid residue arginine-158 of the outer membrane protein PhoE of Escherichia coli K-12 has been shown to be cell-surface-exposed [Korteland et al. (1985) Eur. J. Biochem. 152, 691-697]. To study the effects of small insertions in this region of the protein on its biogenesis and characteristics, a unique restriction site was created by site-directed mutagenesis in a plasmid carrying the phoE gene and oligonucleotides of 12-74 bp were inserted. The insertions did not interfere with incorporation into the outer membrane since (a) several monoclonal antibodies, directed against the cell-surface-exposed part of PhoE protein, bound to whole cells producing the altered proteins and (b) the proteins formed functional pores for the uptake of beta-lactam antibiotics. The binding of one monoclonal antibody and of the PhoE-specific phages TC45 and TC45hrN3 was disturbed by the insertions, showing that this region of the protein is immunogenic and is involved in the binding of both of these phages. The functioning of the mutant pores was characterized both in vivo by studying the uptake of beta-lactam antibiotics and in vitro after the reconstitution of the proteins in black lipid films. The pore characteristics changed depending on the nature of the inserted amino acids. Addition of a negatively charged amino acid resulted in decreased anion-selectivity, whereas insertion of a positive charge and deletion of a negative charge had only a small influence. 相似文献
4.
Export and localization of N-terminally truncated derivatives of Escherichia coli K-12 outer membrane protein PhoE 总被引:4,自引:0,他引:4
To identify export and sorting information in outer membrane protein PhoE of Escherichia coli K-12, a set of deletions was created, resulting in the removal of N-terminal amino acids of the mature protein. Pulse-chase experiments revealed that some mutant proteins were slowly or not at all processed, but there was not correlation between processing rate and the extent of the deletions. The unprocessed precursors were accessible to trypsin in the periplasm showing that processing by leader peptidase rather than translocation is affected by these deletions. The results show that no specific sequences in the N-terminal part of the mature PhoE protein are required for translocation through the inner membrane. The capability of the processed mutant proteins to assemble into the outer membrane was correlated to the exten of the deletions. Thus, mutants which lack up to amino acid residue 14 are normally incorporated into the outer membrane. Larger deletions which removed the first postulated membrane-spanning fragment of the protein affected the efficiency of assembly: in addition to trimers of the protein in the outer membrane, also monomers were detected in the periplasm. If the deletions extended C-terminally to residue 48, only monomeric forms of the proteins were found in the periplasm. 相似文献
5.
The folding of outer membrane protein PhoE of E coli into its native trimeric structure was studied in vitro by using monoclonal antibodies, which recognize cell-surface exposed, conformational epitopes of the protein. These antibodies were able to precipitate the in vitro synthesized PhoE protein, showing that the conformational epitopes are formed in vitro. From analysis by SDS--polyacrylamide gel electrophoresis, it appeared that the precipitated protein represents a folded monomer. The signal sequence interferes with the formation of the conformational epitopes. Outer membranes were required to induce the formation of the stable trimeric form of the protein. This trimerization was not accompanied by insertion into the outer membranes. 相似文献
6.
7.
The assembly of the major outer membrane protein OmpF of Escherichia coli depends on lipid synthesis. 总被引:10,自引:3,他引:10 下载免费PDF全文
Cerulenin, a drug which specifically blocks lipid synthesis, prevented both the trimerization of OmpF monomers and their assembly into the outer membrane of Escherichia coli B cells. A monoclonal antibody directed against a surface-exposed epitope of the trimer was used to probe the assembly of OmpF in the presence or absence of the drug. An inhibition level of 80% was reached 16 min after the addition of cerulenin. The accumulated monomeric form could not be assembled even after lipid synthesis was restored. Instead, it was slowly degraded. It was further shown that the inhibition of assembly resulted in a rapid inhibition of OmpF synthesis. These data demonstrate that there is a direct relationship between the synthesis of lipid (most likely lipopolysaccharide) and the correct export of OmpF. This coupling is required to promote the trimerization of the porin monomer and its assembly into the outer membrane. 相似文献
8.
Henning Schmidt 《Molecular & general genetics : MGG》1987,210(3):485-489
Summary The swi1
+ gene is necessary for effective mating-type (MT) switching in Schizosaccharomyces pombe. It was cloned on a 4.2 kb genomic DNA fragment. By site-directed integration into the genome and gene disruption experiments it was proved that the swi1
+ gene itself and not a suppressor had been isolated. Disruption of the swi1
+ gene causes a phenotype identical to that of the original swi1 mutant, i.e. the strain still shows some MT switching. The swi1 gene is unique in the genome and gives rise to a 3 kb mRNA. 相似文献
9.
10.
The pore properties of PhoE protein channels in the outer membrane of a lipoprotein-deficient mutant and in a mutant with heptose-deficient lipopolysaccharide were investigated. The absence of lipoprotein neither affects the rate of permeation of glucose 6-phosphate or of the beta-lactam antibiotic cephsulodin through the PhoE pore nor the inhibition of cephsulodin permeation by polyphosphate. In contrast, heptose deficiency results in a 6- to 8-fold increase in the rates of permeation of glucose 6-phosphate and cephsulodin. Possible explanations for these data are discussed. It is argued that the lipopolysaccharide structure synthesized under phosphate limitation may be similar to that of the heptoseless mutant and hence that not only the structure of the PhoE protein pore but also the structure of the lipopolysaccharide may promote the uptake of Pi and Pi-containing solutes under phosphate limitation. 相似文献
11.
Characterization of the interfacial behavior and structure of the signal sequence of Escherichia coli outer membrane pore protein PhoE 总被引:6,自引:0,他引:6
A M Batenburg R Brasseur J M Ruysschaert G J van Scharrenburg A J Slotboom R A Demel B de Kruijff 《The Journal of biological chemistry》1988,263(9):4202-4207
The behavior of the chemically synthesized PhoE signal peptide and signal peptide fragments on hydrophilic-hydrophobic interfaces was studied with circular dichroism and monolayer techniques. The experimental results were compared with computer-calculated predictions of peptide structure, orientation, and molecular area. The complete signal sequence was found to aggregate in a beta-sheet structure when introduced in an aqueous environment; on the other hand, in sodium dodecyl sulfate micelles approximately 75% alpha-helical structure was observed. Assuming this to reflect the actual structure in a peptide monolayer and taking into account the orientations predicted for the fragments, the measured molecular areas suggest a looped orientation of the signal sequence with both N and C terminus in the water phase. 相似文献
12.
Protein K is an outer membrane protein found in pathogenic encapsulated strains of Escherichia coli. We present evidence here that protein K is structurally and functionally related to the E. coli K-12 porin proteins (OmpF, OmpC, and PhoE). Protein K was found to cross-react with antibody to OmpF protein and to share 8 out of 17 peptides in common with the OmpF protein. Strains that are OmpC porin- and OmpF porin- and contain protein K as their major outer membrane protein have increased rates of uptake of nutrients and a faster growth rate relative to the parental porin- strain. The protein K-containing strains are at least 1,000-fold more sensitive to colicins E2 and E3 than is the porin -deficient strain. These data suggest that protein K is a functional porin in E. coli. The porin function of protein K was also demonstrated in vitro, using black lipid membranes. Protein K increased the conductance in these membranes in discrete, uniform steps characteristic of channels with a size of about 2 nS. 相似文献
13.
Various monoclonal antibodies (MoF) directed against cell-surface-exposed epitopes of OmpF, one major outer membrane pore protein of Escherichia coli B and K-12, have been used to study the assembly and the topology of the protein. This paper firstly describes the characterization of the OmpF epitopes recognized by the various monoclonal antibodies. A comparison between OmpC, OmpF and PhoE porins with respect to their primary amino acid sequence and their cell-surface exposed regions allows us to propose a rough model including 2 antigenic sites. The second part is focused on the assembly of the OmpF protein in the outer membrane. Various forms, precursor, unassembled monomer, metastable oligomer (pre-trimer) and trimer are detected with immunological probes directed against OmpF during a kinetic analysis of the process. The requirement for a concomitant lipid synthesis during the trimerization has been demonstrated by investigating the presence of a specific native epitope. The role of lipopolysaccharide during the stabilization of the conformation is discussed with regard to the various steps of assembly. 相似文献
14.
Role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein 总被引:6,自引:0,他引:6
M Agterberg H Adriaanse E Tijhaar A Resink J Tommassen 《European journal of biochemistry》1989,185(2):365-370
To investigate the role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein, deletions were generated in two presumed cell surface-exposed regions of the protein. Intact cells expressing these mutant proteins were recognized by PhoE-specific monoclonal antibodies, which recognize conformational epitopes on the cell surface-exposed parts of the protein and/or were sensitive to a PhoE-specific phage. This shows that the polypeptides were normally incorporated into the outer membrane. When the deletions extended four amino acid residues into the seventh presumed membrane-spanning segment, the polypeptides accumulated in the periplasm. In conclusion, exposed regions of PhoE protein apparently do not play an essential role in outer membrane localization, which is consistent with the observation that these regions are hypervariable when PhoE is compared to the related proteins OmpF and OmpC. In contrast, the membrane-spanning segments are essential for the assembly process. 相似文献
15.
Fimbrial ushers are the largest β-barrel outer membrane proteins (OMPs) known to date, which function in the polymerization of fimbriae and their translocation to the bacterial surface. Folding and assembly of these complex OMPs are not characterized. Here, we investigate the role of periplasmic chaperones (SurA, Skp, DegP, and FkpA) and individual components of the β-barrel assembly machinery (BAM) complex (BamA, BamB, BamC, and BamE) in the folding of the Escherichia coli FimD usher. The FimD level is dramatically reduced (~30-fold) in a surA null mutant, but a strong cell envelope stress is constitutively activated with upregulation of DegP (~10-fold). To demonstrate a direct role of SurA, FimD folding was analyzed in a conditional surA mutant in which SurA expression was controlled. In this strain, FimD is depleted from bacteria in parallel to SurA without significant upregulation of DegP. Interestingly, the dependency on SurA is higher for FimD than for other OMPs. We also demonstrate that a functional BAM complex is needed for folding of FimD. In addition, FimD levels were strongly reduced (~5-fold) in a mutant lacking the accessory lipoprotein BamB. The critical role of BamB for FimD folding was confirmed by complementation and BamB depletion experiments. Similar to SurA dependency, FimD showed a stronger dependency on BamB than OMPs. On the other hand, folding of FimD was only marginally affected in bamC and bamE mutants. Collectively, our results indicate that FimD usher follows the SurA-BamB pathway for its assembly. The preferential use of this pathway for the folding of OMPs with large β-barrels is discussed. 相似文献
16.
Georg Ried Ralf Koebnik Ingrid Hindennach Bettina Mutschler Ulf Henning 《Molecular genetics and genomics : MGG》1994,243(2):127-135
The 325-residue outer membrane protein OmpA of Escherichia coli has been proposed to consist of a membrane-embedded moiety (residues 1 to about 170) and a C-terminal periplasmic region. The former is thought to comprise eight transmembrane segments in the form of antiparallel β-strands, forming an amphiphilic β connected by exposed turns. Several questions concerning this model were addressed. Thus no experimental evidence had been presented for the turns at the inner leaflet of the membrane and it was not known whether or not the periplasmic part of the polypeptide plays a role in the process of membrane incorporation. Oligonucleotides encoding trypsin cleavage sites were inserted at the predicted turn sites of the ompA gene and it was shown that the encoded proteins indeed become accessible to trypsin at the modified sites. Together with previous results, these data also show that the turns on both sides of the membrane do not possess specifically topogenic information. In two cases one of the two expected tryptic fragments was lost and could be detected at low concentration in only one case. Therefore, bilateral proteolytic digestion of outer membranes can cause loss of β-strands and does not necessarily produce a reliable picture of protein topology. When ompA genes were constructed coding for proteins ending at residue 228 or 274, the membrane assembly of these proteins was shown to be partially defective with about 20% of the proteins not being assembled. No such defect was observed when, following the introduction of a premature stop codon, a truncated protein was produced ending with residue 171. It is concluded that (1) the proposed β-barrel structure is essentially correct and (2) the periplasmic part of OmpA does not play an active role in, but can, when present in mutant form, interfere with membrane assembly. 相似文献
17.
18.
Chemical modification of the anion selectivity of the PhoE porin from the Escherichia coli outer membrane 总被引:1,自引:0,他引:1
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity. 相似文献
19.
Assembly pathway of newly synthesized LamB protein an outer membrane protein of Escherichia coli K-12 总被引:14,自引:0,他引:14
The assembly of newly induced LamB protein (phage lambda receptor) was investigated in an operon fusion strain of Escherichia coli, in which the lamB gene is expressed under lac promoter control. The induction kinetics both for total cellular and for cell surface-exposed LamB protein were studied by immunochemical detection methods, using two distinct antisera directed against detergent-solubilized LamB trimers and completely denatured LamB monomers, respectively. Anti-trimer antibodies recognized both monomers and trimers, whereas anti-monomer antibodies only reacted with monomers. Provided appropriate solubilization conditions were used, both antisera were able to immunoprecipitate intracellular mature LamB protein quantitatively. Following induction, the first LamB antigenic determinants were detected after 60 to 80 seconds; detection of the newly synthesized protein by anti-monomer antibodies slightly preceded that by anti-trimer antibodies, a finding that could be partly explained by the observation that anti-monomer antibodies recognized a larger fraction of nascent LamB than did anti-trimer antibodies. Exposure of antigenic determinants at the cell surface was delayed for 30 to 50 seconds with respect to their synthesis. Therefore, either translocation or conformational changes must be rate-limiting in the series of processes that eventually convert the newly synthesized protein into its mature outer membrane state. LamB protein was found to occur in at least three clearly distinguishable states. State I is the LamB monomer, state II corresponds to a metastable trimer that dissociates in sodium dodecyl sulphate above 60 degrees C, and state III is the state LamB trimer that dissociates in sodium dodecyl sulphate only at temperatures above 90 degrees C. The chase kinetics of these states showed that conversion of newly synthesized LamB monomers to stable LamB trimers occurred in two stages: state I monomers were chased into metastable state II trimers rapidly (t 1/2 = 20 s), whereas stabilization of state II trimers to state III trimers was a relatively slow (t 1/2 = 5.7 min) process. Based on our results, a timing sequence in the assembly of outer membrane LamB protein is proposed. 相似文献
20.
J F Lutkenhaus 《Journal of bacteriology》1977,131(2):631-637
Mutants of Escherichia coli B/r lacking a major outer membrane protein, protein b, were obtained by selecting for resistance to copper. These mutants showed a decreased ability to utilize a variety of metabolites when the metabolites were present at low concentrations. Also, mutants of E. coli K-12 lacking proteins b and c from the outer membrane were shown to have an identical defect in the uptake of various metabolites. These results are discussed with regard to their implications as to the role of these proteins in permeability of the outer membrane, 相似文献