首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Reactive oxygen species (ROS) were shown to mediate aberrant contractility in hypertension, yet the physiological roles of ROS in vascular smooth muscle contraction have remained elusive. This study aimed to examine whether ROS regulate α1-adrenoceptor-activated contraction by altering myosin phosphatase activities.  相似文献   

2.

Background  

Reactive oxygen species (ROS) play an important role in aging and age-related diseases such as Parkinson's disease and Alzheimer's disease. Much of the ROS production under conditions of toxic stress is from mitochondria, and multiple antioxidants prevent ROS accumulation. The aim of this study is to examine the specificity of the interaction between the antioxidants and ROS production in stressed cells.  相似文献   

3.

Background  

Reactive oxygen species (ROS) are unavoidable by-products of oxygenic photosynthesis, causing progressive oxidative damage and ultimately cell death. Despite their destructive activity they are also signalling molecules, priming the acclimatory response to stress stimuli.  相似文献   

4.

Background  

KillerRed (KR) is a novel photosensitizer that efficiently generates reactive oxygen species (ROS) in KR-expressing cells upon intense green or white light illumination in vitro, resulting in damage to their plasma membrane and cell death.  相似文献   

5.

Background  

The global regulatory system ArcAB controls the anaerobic growth of E. coli, however, its role in aerobic conditions is not well characterized. We have previously reported that ArcA was necessary for Salmonella to resist reactive oxygen species (ROS) in aerobic conditions.  相似文献   

6.

Background  

Oxygenic photosynthesis is accompanied by the formation of reactive oxygen species (ROS), which damage proteins, lipids, DNA and finally limit plant yield. The enzymes of the chloroplast antioxidant system are exclusively nuclear encoded. During evolution, plastid and mitochondrial genes were post-endosymbiotically transferred to the nucleus, adapted for eukaryotic gene expression and post-translational protein targeting and supplemented with genes of eukaryotic origin.  相似文献   

7.

Background  

It is generally accepted that oxidative stress is an important factor in male infertility because it may impair the physiological function of spermatozoa at the molecular level. Nevertheless, although several approaches have been reported, the imbalance between production of reactive oxygen species (ROS) and activity of the antioxidant defense system in semen is difficult to investigate and remains poorly understood.  相似文献   

8.

Background  

Airborne particulate matter, from cooking oil, smoking, engine exhaust and other sources, is associated with the development of atherosclerosis and myocardial infarction. In order to explore the cellular and molecular events following exposure of rats to lard oil smoke, we measured the generation of reactive oxygen species (ROS), substance P, cellular adhesion molecules, and thrombosis in relation to inhibitors of substance P, the NK-1 receptor, and antioxidants.  相似文献   

9.

Background  

Mycobacteria have developed a number of pathways that provide partial protection against both reactive oxygen species (ROS) and reactive nitrogen species (RNS). We recently identified a locus in Mycobacterium marinum, mel2, that plays a role during infection of macrophages. The molecular mechanism of mel2 action is not well understood.  相似文献   

10.

Background  

Recent work has shown that glucose may induce cell injury through the action of free radicals generated by autooxidation or through hypoxanthine phosphoribosyltransferase inhibition. The effect of glucose during early in vitro culture (IVC) period of porcine embryos on their developmental competence, contents of reactive oxygen species (ROS) and glutathione (GSH), and the quality of the blastocysts yielded was examined.  相似文献   

11.

Background  

A major endogenous protective mechanism in many organs against ischemia/reperfusion (I/R) injury is ischemic preconditioning (IPC). By moderately uncoupling the mitochondrial respiratory chain and decreasing production of reactive oxygen species (ROS), IPC reduces apoptosis induced by I/R by reducing cytochrome c release from the mitochondria. One element believed to contribute to reduce ROS production is the uncoupling protein UCP2 (and UCP3 in the heart). Although its implication in IPC in the brain has been shown in vitro, no in vivo study of protein has shown its upregulation. Our first goal was to determine in rat hippocampus whether UCP2 protein upregulation was associated with IPC-induced protection and increased ROS production. The second goal was to determine whether the peptide ghrelin, which possesses anti-oxidant and protective properties, alters UCP2 mRNA levels in the same way as IPC during protection.  相似文献   

12.

Background  

NADPH-oxidases (Nox) and the related Dual oxidases (Duox) play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS). Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes.  相似文献   

13.

Background  

Recent studies have shown that reactive oxygen species (ROS) and nitric oxide (NO) are involved in the signalling processes taking place during the interactions pollen-pistil in several plants. The olive tree (Olea europaea L.) is an important crop in Mediterranean countries. It is a dicotyledonous species, with a certain level of self-incompatibility, fertilisation preferentially allogamous, and with an incompatibility system of the gametophytic type not well determined yet. The purpose of the present study was to determine whether relevant ROS and NO are present in the stigmatic surface and other reproductive tissues in the olive over different key developmental stages of the reproductive process. This is a first approach to find out the putative function of these signalling molecules in the regulation of the interaction pollen-stigma.  相似文献   

14.

Background and Aims

The aquatic moss Fontinalis antipyretica requires a slow rate of dehydration to survive a desiccation event. The present work examined whether differences in the dehydration rate resulted in corresponding differences in the production of reactive oxygen species (ROS) and therefore in the amount of cell damage.

Methods

Intracellular ROS production by the aquatic moss was assessed with confocal laser microscopy and the ROS-specific chemical probe 2,7-dichlorodihydrofluorescein diacetate. The production of hydrogen peroxide was also quantified and its cellular location was assessed.

Key Results

The rehydration of slowly dried cells was associated with lower ROS production, thereby reducing the amount of cellular damage and increasing cell survival. A high oxygen consumption burst accompanied the initial stages of rehydration, perhaps due to the burst of ROS production.

Conclusions

A slow dehydration rate may induce cell protection mechanisms that serve to limit ROS production and reduce the oxidative burst, decreasing the number of damaged and dead cells due upon rehydration.  相似文献   

15.

Background  

Colic could be accompanied by changes in the morphology and physiology of organs and tissues, such as the intestine. This process might be, at least in part, due to the accumulation of oxidative damage induced by reactive oxygen (ROS) and reactive nitrogen species (RNS), secondary to intestinal ischemia. Glutathione (GSH), being the major intracellular thiol, provides protection against oxidative injury. The aim of this study was to investigate whether ischemia-induced intestinal injury could be related with alterations in GSH metabolism.  相似文献   

16.

Background  

The tissue accumulation of protein-bound advanced glycation endproducts (AGE) may be involved in the etiology of diabetic chronic complications, including osteopenia. The aim of this study was to investigate the effect of an AGE-modified type I collagen substratum on the adhesion, spreading, proliferation and differentiation of rat osteosarcoma UMR106 and mouse non-transformed MC3T3E1 osteoblastic cells. We also studied the role of reactive oxygen species (ROS) and nitric oxide synthase (NOS) expression on these AGE-collagen mediated effects.  相似文献   

17.

Background

Bovine Leukemia virus (BLV) is a deltaretrovirus that induces lymphoproliferation and leukemia in ruminants. In ex vivo cultures of B lymphocytes isolated from BLV-infected sheep show that spontaneous apoptosis is reduced. Here, we investigated the involvement of reactive oxygen species (ROS) in this process.

Results

We demonstrate that (i) the levels of ROS and a major product of oxidative stress (8-OHdG) are reduced, while the thioredoxin antioxidant protein is highly expressed in BLV-infected B lymphocytes, (ii) induction of ROS by valproate (VPA) is pro-apoptotic, (iii) inversely, the scavenging of ROS with N-acetylcysteine inhibits apoptosis, and finally (iv) the levels of ROS inversely correlate with the proviral loads.

Conclusion

Together, these observations underline the importance of ROS in the mechanisms of inhibition of apoptosis linked to BLV infection.  相似文献   

18.

Background  

Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1.  相似文献   

19.

Background

Hydroxy-1-aryl-isochromans (HAIC) are newly emerging natural polyphenolic antioxidants, enriched in extravirgin olive oil, whose antioxidative potency was only scarcely characterized using cell-free systems and cells.

Methods

We characterized the activity of HAIC to inactivate reactive oxygen species (ROS) generated by the xanthine/xanthine oxidase system, mitochondria (rat brain) and neural cells. ROS levels were estimated using ROS-sensitive probes, such as Amplex Red, MitoSOXRED.

Results

HAIC (with 2, 3 or 4 hydroxyl substituents) effectively scavenge ROS released from mitochondria. EC50 values estimated with mitochondria and submitochondrial particles were around 20 μM. Moreover, in PC12 and cultured neural primary cells, HAIC buffered cytosolic ROS. Although HAIC permeate biological membranes, HAIC fail to buffer matrix ROS in isolated mitochondria. We show that hydrogen peroxide was effectively abolished by HAIC, whereas the production of superoxide was not affected.

Conclusion

HAIC exert high antioxidative activity to reduce hydrogen peroxide. The antioxidative activity of HAIC is comparable with that of the stilbene-like, polyphenolic resveratrol, but much higher than that of trolox, N-acetylcysteine or melatonin.

General significance

Unlike resveratrol, HAIC do not impair mitochondrial ATP synthesis or Ca2+ retention by mitochondria. Thus, HAIC have the decisive advantage to be potent antioxidants with no detrimental side effects on mitochondrial functions.  相似文献   

20.

Background  

Reactive oxygen species (ROS) are normally produced in respiratory and photosynthetic electron chains and their production is enhanced during desiccation/rehydration. Nitric oxide (NO) is a ubiquitous and multifaceted molecule involved in cell signaling and abiotic stress. Lichens are poikilohydrous organisms that can survive continuous cycles of desiccation and rehydration. Although the production of ROS and NO was recently demonstrated during lichen rehydration, the functions of these compounds are unknown. The aim of this study was to analyze the role of NO during rehydration of the lichen Ramalina farinacea (L.) Ach., its isolated photobiont partner Trebouxia sp. and Asterochloris erici (Ahmadjian) Skaloud et Peksa (SAG 32.85 = UTEX 911).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号