首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous.  相似文献   

2.

Background  

Hybrid zones generally represent areas of secondary contact after speciation. The nature of the interaction between genes of individuals in a hybrid zone is of interest in the study of evolutionary processes. In this study, data from nuclear microsatellites and mitochondrial DNA sequences were used to genetically characterize hybridization between wild mongoose lemurs (Eulemur mongoz) and brown lemurs (E. fulvus) at Anjamena in west Madagascar.  相似文献   

3.

Background

Evolutionary theories that account for the unusual socio-ecological traits and life history features of group-living prosimians, compared with other primates, predict behavioral and physiological mechanisms to conserve energy. Low energy output and possible fattening mechanisms are expected, as either an adaptive response to drastic seasonal fluctuations of food supplies in Madagascar, or persisting traits from previously nocturnal hypometabolic ancestors. Free ranging ring-tailed lemurs (Lemur catta) and brown lemurs (Eulemur sp.) of southern Madagascar have different socio-ecological characteristics which allow a test of these theories: Both gregarious primates have a phytophagous diet but different circadian activity rhythms, degree of arboreality, social systems, and slightly different body size.

Methodology and Results

Daily total energy expenditure and body composition were measured in the field with the doubly labeled water procedure. High body fat content was observed at the end of the rainy season, which supports the notion that individuals need to attain a sufficient physical condition prior to the long dry season. However, ring-tailed lemurs exhibited lower water flux rates and energy expenditure than brown lemurs after controlling for body mass differences. The difference was interpreted to reflect higher efficiency for coping with seasonally low quality foods and water scarcity. Daily energy expenditure of both species was much less than the field metabolic rates predicted by various scaling relationships found across mammals.

Discussion

We argue that low energy output in these species is mainly accounted for by low basal metabolic rate and reflects adaptation to harsh, unpredictable environments. The absence of observed sex differences in body weight, fat content, and daily energy expenditure converge with earlier investigations of physical activity levels in ring-tailed lemurs to suggest the absence of a relationship between energy constraints and the evolution of female dominance over males among lemurs. Nevertheless, additional seasonal data are required to provide a definitive conclusion.  相似文献   

4.

Background  

Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition.  相似文献   

5.

Background

Frugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce.

Methodology/Principal Findings

Lemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees.

Conclusions/Significance

Our findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for their conservation.  相似文献   

6.

Background  

Rapid human-induced changes in the environment at local, regional and global scales appear to be contributing to population declines and extinctions, resulting in an unprecedented biodiversity crisis. Although in the short term populations can respond ecologically to environmental alterations, in the face of persistent change populations must evolve or become extinct. Existing models of evolution and extinction in changing environments focus only on single species, even though the dynamics of extinction almost certainly depend upon the nature of species interactions.  相似文献   

7.

Background and Aims

Olearia flocktoniae is an endangered shrub that was passively translocated from its natural ecosystem, where it has since gone extinct. This study aimed to determine sensitivities vital to populations persisting in human-created areas.

Methods

Population colonization, longevity and extinction were investigated over 20 years using 133 populations. Seed-bank longevity was determined from germination trials of seeds exhumed from extinct and extant sites via a 10-year glasshouse trial and by in situ sowing experiments. From 27 populations, 98 cohorts were followed and matrix models of transitions from seeds to adults were used to evaluate the intrinsic rate of population growth against disturbance histories. Ten populations (38 cohorts) with different disturbance histories were used to evaluate sensitivities in vital rates.

Key Results

Most populations had few individuals (∼30) and were transient (<5 years above ground). The intrinsic population growth rate was rarely >1 and all but two populations were extinct at year 20. Seeds were short-lived in situ. Although >1000 seeds per plant were produced annually in most populations, sensitivity analysis showed that the transition to the seed bank and the transition from the seed bank to seedlings are key vulnerabilities in the life-cycle.

Conclusions

Seedling establishment is promoted by recent disturbance. Increasing the number of disturbance events in populations, even severe disturbances that almost extirpate populations, significantly increases longer-term population persistence. Only populations that were disturbed annually survived the full 20 years of the study. The results show that translocated populations of O. flocktoniae will fail to persist without active management.  相似文献   

8.

Background

Concern about the decline of wild salmon has attracted the attention of the International Union for the Conservation of Nature (IUCN). The IUCN applies quantitative criteria to assess risk of extinction and publishes its results on the Red List of Threatened Species. However, the focus is on the species level and thus may fail to show the risk to populations. The IUCN has adapted their criteria to apply to populations but there exist few examples of this type of assessment. We assessed the status of sockeye salmon Oncorhynchus nerka as a model for application of the IUCN population-level assessments and to provide the first global assessment of the status of an anadromous Pacific salmon.

Methods/Principal Findings

We found from demographic data that the sockeye salmon species is not presently at risk of extinction. We identified 98 independent populations with varying levels of risk within the species'' range. Of these, 5 (5%) are already extinct. We analyzed the risk for 62 out of 93 extant populations (67%) and found that 17 of these (27%) are at risk of extinction. The greatest number and concentration of extinct and threatened populations is in the southern part of the North American range, primarily due to overfishing, freshwater habitat loss, dams, hatcheries, and changing ocean conditions.

Conclusions/Significance

Although sockeye salmon are not at risk at the species-level, about one-third of the populations that we analyzed are at risk or already extinct. Without an understanding of risk to biodiversity at the level of populations, the biodiversity loss in salmon would be greatly underrepresented on the Red List. We urge government, conservation organizations, scientists and the public to recognize this limitation of the Red List. We also urge recognition that about one-third of sockeye salmon global population diversity is at risk of extinction or already extinct.  相似文献   

9.

Introduction

Reintroduction of endangered animals as part of conservational programs bears the risk of importing human pathogens from the sanctuary to the natural habitat. One bacterial pathogen that serves as a model organism to analyze this transmission is Staphylococcus aureus as it can colonize and infect both humans and animals. The aim of this study was to evaluate the utility of various biological samples to monitor S. aureus colonization in great apes and lemurs.

Methods

Mucosal swabs from wild lemurs (n=25, Kirindy, Madagascar), feces, oral and genital swabs from captive chimpanzees (n=58, Ngamba and Entebbe, Uganda) and fruit wadges and feces from wild chimpanzees (n=21, Taï National Parc, Côte d’Ivoire) were screened for S. aureus. Antimicrobial resistance and selected virulence factors were tested for each isolate. Sequence based genotyping (spa typing, multilocus sequence typing) was applied to assess the population structure of S. aureus.

Results

Oro-pharyngeal carriage of S. aureus was high in lemurs (72%, n=18) and captive chimpanzees (69.2%, n=27 and 100%, n=6, respectively). Wild chimpanzees shed S. aureus through feces (43.8, n=7) and fruit wadges (54.5, n=12). Analysis of multiple sampling revealed that two samples are sufficient to detect those animals which shed S. aureus through feces or fruit wadges. Genotyping showed that captive animals are more frequently colonized with human-associated S. aureus lineages.

Conclusion

Oro-pharyngeal swabs are useful to screen for S. aureus colonization in apes and lemurs before reintroduction. Duplicates of stool and fruit wadges reliably detect S. aureus shedding in wild chimpanzees. We propose to apply these sampling strategies in future reintroduction programs to screen for S. aureus colonization. They may also be useful to monitor S. aureus in wild populations.  相似文献   

10.

Background

One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.

Methodology/Principal Findings

Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary.

Conclusions/Significance

Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced “avian” lung structure and high locomotor costs.  相似文献   

11.

Background  

The lemurs of Madagascar provide an excellent mammalian radiation to explore mechanisms and processes favouring species diversity and evolution. Species diversity, in particular of nocturnal species, increased considerably during the last decade. However, the factors contributing to this high diversity are not well understood. We tested predictions derived from two existing biogeographic models by exploring the genetic and morphological divergence among populations of a widely distributed lemur genus, the sportive lemur (Lepilemur ssp.) along a 560 km long transect from western to northern Madagascar.  相似文献   

12.

Aim

Extinctions of species and subspecific taxa in hotspots of biodiversity deserve special attention. After more than 40 years of major efforts, estimates of extinct plant taxa in California seem to be somewhat stabilized. The time is ripe for an attempt to critically evaluate our current knowledge of plant extinctions in California and make a comparison with other countries with mediterranean‐type climates.

Location

California.

Methods

Besides species‐specific studies and personal communications, major databases and state floras were consulted.

Results

Compared with all numbers published earlier, the current analysis ended with smaller numbers of globally extinct plant species and taxa (13 and 17, respectively) and larger numbers of species and taxa extinct in California, but still present in at least one other state or country (15 and 15). For each species, life form, habitat, year of the last collection and assumed drivers of extinction are listed.

Main conclusions

Most of the presumed extinct taxa were originally present in one or two counties and often are known from only one or a very few collections. Therefore, the most robust generalization regarding factors contributing to taxon extinctions is a small range size and a low original abundance. Most of the presumed globally extinct taxa were originally present in lowlands where most of the human population and habitat destruction are concentrated. Taxa limited to special habitats, like wetlands, seem to be more predisposed to extinction. Among assumed drivers of plant extinction, agriculture, urbanization and development in general are the most often cited possibilities. Compared with other countries with mediterranean‐type climates, the extinction rate of vascular plants in California is lower than in Israel, comparable with the Cape Province of South Africa, Western Australia and continental Mediterranean European countries, and higher than in Chile.  相似文献   

13.

Background  

Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense).  相似文献   

14.

Background

Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus) once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry.

Methodology/Findings

We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males) exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a “Floreana-like” mitochondrial DNA haplotype.

Significance

Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C. elephantopus ancestry currently reside at a centralized breeding facility on Santa Cruz, these findings permit breeding efforts to commence in support of the reestablishment of this extinct species to its native range.  相似文献   

15.

Background

Numerous endemic mammals, including dwarf elephants, goats, hippos and deers, evolved in isolation in the Mediterranean islands during the Pliocene and Pleistocene. Most of them subsequently became extinct during the Holocene. Recently developed high-throughput sequencing technologies could provide a unique tool for retrieving genomic data from these extinct species, making it possible to study their evolutionary history and the genetic bases underlying their particular, sometimes unique, adaptations.

Methodology/Principals Findings

A DNA extraction of a ∼6,000 year-old bone sample from an extinct caprine (Myotragus balearicus) from the Balearic Islands in the Western Mediterranean, has been subjected to shotgun sequencing with the GS FLX 454 platform. Only 0.27% of the resulting sequences, identified from alignments with the cow genome and comprising 15,832 nucleotides, with an average length of 60 nucleotides, proved to be endogenous.

Conclusions

A phylogenetic tree generated with Myotragus sequences and those from other artiodactyls displays an identical topology to that generated from mitochondrial DNA data. Despite being in an unfavourable thermal environment, which explains the low yield of endogenous sequences, our study demonstrates that it is possible to obtain genomic data from extinct species from temperate regions.  相似文献   

16.
Goodman (1994) related the antipredator response exhibited by two species of lemurs from southwestern Madagascar against extant birds of prey to the predatory efforts of an extinct eagle, inhabiting the same region about 4000 years ago. He argued that today’s smaller raptors, hunting young individuals perhaps only occasionally, represent marginal danger to lemurs. Nevertheless,their activity would be sufficient to impose a continuous reinforcement to a strong antipredator response. I question such an interpretation and instead suggest that extant birds of prey may indeed represent a strong threat to lemurs and that the same might not have been necessarily true for the extinct eagle. In addition, I propose four optional hypotheses, all of which encompass a marginal role for the extinct eagle.  相似文献   

17.

Background  

The Icelandic horse is a pristine breed of horse which has a pure gene pool established more than a thousand years ago, and is approximately the same size as living and extinct wild breeds of horses. This study was performed to compare the length of the skeletal growth period of the "primitive" Icelandic horse relative to that reported for large horse breeds developed over the recent centuries. This information would provide practical guidance to owners and veterinarians as to when the skeleton is mature enough to commence training, and would be potentially interesting to those scientists investigating the pathogenesis of osteochondrosis. Interestingly, osteochondrosis has not been documented in the Icelandic horse.  相似文献   

18.
19.

Background

The fossil record reveals surprising crocodile diversity in the Neogene of Africa, but relationships with their living relatives and the biogeographic origins of the modern African crocodylian fauna are poorly understood. A Plio-Pleistocene crocodile from Olduvai Gorge, Tanzania, represents a new extinct species and shows that high crocodylian diversity in Africa persisted after the Miocene. It had prominent triangular “horns” over the ears and a relatively deep snout, these resemble those of the recently extinct Malagasy crocodile Voay robustus, but the new species lacks features found among osteolaemines and shares derived similarities with living species of Crocodylus.

Methodology/Principal Findings

The holotype consists of a partial skull and skeleton and was collected on the surface between two tuffs dated to approximately 1.84 million years (Ma), in the same interval near the type localities for the hominids Homo habilis and Australopithecus boisei. It was compared with previously-collected material from Olduvai Gorge referable to the same species. Phylogenetic analysis places the new form within or adjacent to crown Crocodylus.

Conclusions/Significance

The new crocodile species was the largest predator encountered by our ancestors at Olduvai Gorge, as indicated by hominid specimens preserving crocodile bite marks from these sites. The new species also reinforces the emerging view of high crocodylian diversity throughout the Neogene, and it represents one of the few extinct species referable to crown genus Crocodylus.  相似文献   

20.

Background  

The high polymorphism rate in the human ABO blood group gene seems to be related to susceptibility to different pathogens. It has been estimated that all genetic variation underlying the human ABO alleles appeared along the human lineage, after the divergence from the chimpanzee lineage. A paleogenetic analysis of the ABO blood group gene in Neandertals allows us to directly test for the presence of the ABO alleles in these extinct humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号