首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative Genome Mapping of Sorghum and Maize   总被引:20,自引:0,他引:20  
R. Whitkus  J. Doebley    M. Lee 《Genetics》1992,132(4):1119-1130
Linkage relationships were determined among 85 maize low copy number nuclear DNA probes and seven isozyme loci in an F2 population derived from a cross of Sorghum bicolor ssp. bicolor x S. bicolor ssp. arundinaceum. Thirteen linkage groups were defined, three more than the 10 chromosomes of sorghum. Use of maize DNA probes to produce the sorghum linkage map allowed us to make several inferences concerning processes involved in the evolutionary divergence of the maize and sorghum genomes. The results show that many linkage groups are conserved between these two genomes and that the amount of recombination in these conserved linkage groups is roughly equivalent in maize and sorghum. Estimates of the proportions of duplicated loci suggest that a larger proportion of the loci are duplicated in the maize genome than in the sorghum genome. This result concurs with a prior estimate that the nuclear DNA content of maize is three to four times greater than that of sorghum. The pattern of conserved linkages between maize and sorghum is such that most sorghum linkage groups are composed of loci that map to two maize chromosomes. This pattern is consistent with the hypothesized ancient polyploid origin of maize and sorghum. There are nine cases in which locus order within shared linkage groups is inverted in sorghum relative to maize. These may have arisen from either inversions or intrachromosomal translocations. We found no evidence for large interchromosomal translocations. Overall, the data suggest that the primary processes involved in divergence of the maize and sorghum genomes were duplications (either by polyploidy or segmental duplication) and inversions or intrachromosomal translocations.  相似文献   

2.
Helentjaris T  Weber D  Wright S 《Genetics》1988,118(2):353-363
While preparing a linkage map for maize based upon loci detected through the use of restriction fragment length polymorphisms (RFLPs), it was found that 62 of the 217 cloned maize sequences tested (29%) detected more than one fragment on genomic Southern blots. Thus, more than one nucleotide sequence is present within the maize genome which is in part homologous to each of these cloned sequences. The genomic locations of these ``duplicate' sequences were determined and it was found that they usually originated from different chromosomes. The process which produced them did not operate randomly as some pairs of chromosomes share many duplicate sequences while many other pairs share none. Furthermore, these shared duplicate sequences are generally arrayed in an ordered arrangement along these chromosomes. It is believed that chromosomal segments which contain several duplicate loci in a generally ordered arrangement must have had a common origin. The presence of these duplicated segments supports the idea that allopolyploidy may have been involved in the evolution of maize. Nevertheless, the duplicate loci do not primarily involve five pairs of chromosomes and thus, five pairs of homeologous chromosomes are not currently present within the maize genome. The data clearly indicate that maize is not a recent allotetraploid produced by hybridization between two individuals with similar genomic structures; however, the data are also consistent with the possibility of these shared duplicate chromosomal segments having been generated through internal duplication.  相似文献   

3.
Y Q Wu  Yinghua Huang 《Génome》2007,50(1):84-89
Sorghum bicolor (L.) Moench is an important grain and forage crop grown worldwide. We developed a simple sequence repeat (SSR) linkage map for sorghum using 352 publicly available SSR primer pairs and a population of 277 F2 individuals derived from a cross between the Westland A line and PI 550610. A total of 132 SSR loci appeared polymorphic in the mapping population, and 118 SSRs were mapped to 16 linkage groups. These mapped SSR loci were distributed throughout 10 chromosomes of sorghum, and spanned a distance of 997.5 cM. More important, 38 new SSR loci were added to the sorghum genetic map in this study. The mapping result also showed that chromosomes SBI-01, SBI-02, SBI-05, and SBI-06 each had 1 linkage group; the other 6 chromosomes were composed of 2 linkage groups each. Except for 5 closely linked marker flips and 1 locus (Sb6_34), the marker order of this map was collinear to a published sorghum map, and the genetic distances of common marker intervals were similar, with a difference ratio 相似文献   

4.
Similarity of maize and sorghum genomes as revealed by maize RFLP probes   总被引:5,自引:0,他引:5  
Summary Densely saturated genetic maps of neutral genetic markers are a prerequisite either for plant breeding programs to improve quantitative traits in crops or for evolutionary studies. cDNA and genomic clones from maize were utilized to initiate the construction of a RFLP linkage map in Sorghum bicolor. To this purpose, an F2 population was produced from starting parental lines IS 18729 (USA) and IS 24756 (Nigeria) that were differentiated with regard to many morphological and agronomical traits. A total of 159 maize clones were hybridized to the genomic DNA of the two parents in order to detect polymorphism: 154 probes hybridized to sorghum and 58 out of these were polymorphic. In almost all of the cases hybridization patterns were similar between maize and sorghum. The analysis of the segregation of 35 polymorphic clones in an F2 population of 149 individuals yielded five linkage groups. The three principal ones recall regions of maize chromosomes 1, 3 and 5: in general, colinearity was maintained. A possible inversion, involving a long region of maize chromosome 3, was detected. Simulations were also performed to empirically obtain a value for the lowest number of individuals of the F2 population needed to obtain the same linkage data.Prof. E. Ottaviano, to whom this paper is dedicated, suddenly died on June 7th, 1991  相似文献   

5.
Summary A detailed linkage map ofB. rapa (syn.campestris) was constructed based on segregation of 280 restriction fragment length polymorphism loci, detected by using 188 genomic DNA clones as probes on DNAs from a F2 population of Chinese cabbage MichihilF×Spring broccoli. These genetic markers covered 1,850 centiMorgans (cM) and defined ten linkage groups, which equals the haploid chromosome number of this species. Extensive sequence duplication was evident by the detection of two or more segregating loci with each of 69 clones (36.7% of the total). Although some duplicated loci were randomly distributed throughout the genome, many had linkage arrangements that were conserved on different linkage groups, suggesting that large chromosome fragments were present in multiple copies. However, conservation in the linkage arrangement of duplicate loci throughout entire pairs of linkage groups was not observed. Single-copy loci were often found to be located within conserved duplicated regions, and linkage distances between some loci having conserved duplicated arrangements were substantially different between the duplicated regions. Structural rearrangements, such as insertions, deletions, and inversions or combinations of these events, seemed to be related to the alternations of map distances between duplicated loci and to the dispersal of duplicated chromosome fragments. These results suggest thatB. rapa has evolved in part by duplication of chromosomes or large chromosome fragments with subsequent structural rearrangements.  相似文献   

6.
Molecular mapping of rice chromosomes   总被引:108,自引:0,他引:108  
Summary We report the construction of an RFLP genetic map of rice (Oryza sativa) chromosomes. The map is comprised of 135 loci corresponding to clones selected from a PstI genomic library. This molecular map covers 1,389 cM of the rice genome and exceeds the current classical maps by more than 20%. The map was generated from F2 segregation data (50 individuals) from a cross between an indica and javanica rice cultivar. Primary trisomics were used to assign linkage groups to each of the 12 rice chromosomes. Seventy-eight percent of the clones assayed revealed RFLPs between the two parental cultivars, indicating that rice contains a significant amount of RFLP variation. Strong correlations between size of hybridizing restriction fragments and level of polymorphism indicate that a significant proportion of the RFLPs in rice are generated by insertions/delections. This conclusion is supported by the occurrence of null alleles for some clones (presumably created by insertion or deletion events). One clone, RG229, hybridized to sequences in both the indica and javanica genomes, which have apparently transposed since the divergence of the two cultivars from their last common ancestor, providing evidence for sequence movement in rice. As a by product of this mapping project, we have discovered that rice DNA is less C-methylated than tomato or maize DNA. Our results also suggest the notion that a large fraction of the rice genome (approximately 50%) is single copy.  相似文献   

7.
A unigene set of 1411 contigs was constructed from 2629 redundant maize expressed sequence tags (ESTs) mapped on the maizeDB genetic map. Rice orthologous sequences were identified by blast alignment against the rice genomic sequence. A total of 1046 (74%) maize contigs were associated with their corresponding homologues in the rice genome and 656 (47%) defined as potential orthologous relationships. One hundred and seventeen (8%) maize EST contigs mapped to two distinct loci on the maize genetic map, reflecting the tetraploid nature of the maize genome. Among 492 mono-locus contigs, 344 (484 redundant ESTs) identify collinear blocks between maize chromosomes 2 and 4 and a single rice chromosome, defining six new collinear regions. Fine-scale analysis of collinearity between rice chromosomes 1 and 5 with maize chromosomes 3, 6 and 8 shows the presence of internal rearrangements within collinear regions. Mapping of maize contigs to two distinct loci on the rice sequence identifies five new duplication events in rice. Detailed analysis of a duplication between rice chromosomes 1 and 5 shows that 11% of the annotated genes from the chromosome 1 locus are found duplicated on the chromosome 5 paralogous counterpart, indicating a high degree of re-organisations. The implications of these findings for map-based cloning in collinear regions are discussed.  相似文献   

8.
Summary A detailed genetic linkage map of Brassica oleracea was constructed based on the segregation of 258 restriction fragment length polymorphism loci in a broccoli × cabbage F2 population. The genetic markers defined nine linkage groups, covering 820 recombination units. A majority of the informative genomic DNA probes hybridized to more than two restriction fragments in the F2 population. Duplicate sequences having restriction fragment length polymorphism were generally found to be unlinked for any given probe. Many of these duplicated loci were clustered non-randomly on certain pairs of linkage groups, and conservation of the relative linkage arrangement of the loci between linkage groups was observed. While these data support previous cytological evidence for the existence of duplicated regions and the evolution of B. oleracea from a lower chromosome number progenitor, no evidence was provided for the current existence of blocks of homoeology spanning entire pairs of linkage groups. The arrangement of the analyzed duplicated loci suggests that a fairly high degree of genetic rearrangement has occurred in the evolution of B. oleracea. Several probes used in this study were useful in detecting rearrangements between the B. oleracea accessions used as parents, indicating that genetic rearrangements have occurred in the relatively recent evolution of this species.  相似文献   

9.
Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae.  相似文献   

10.
Construction of an RFLP map in sorghum and comparative mapping in maize.   总被引:8,自引:0,他引:8  
An F2 population derived from a cross between Sorghum bicolor ssp. bicolor ('CK60') and Sorghum bicolor ssp. drummondii ('PI229828') was used to develop an RFLP genetic linkage map of sorghum. The map consists of 201 loci distributed among 10 linkage groups covering a map distance of 1530 cM, with an average 8 cM between adjacent loci. Maize genomic probes (52), maize cDNA probes (124), and sorghum genomic probes (10) were used to define the loci (55, 136, and 10, respectively). Ninety-five percent of the loci fit expected segregation ratios. The loci with distorted segregation ratios were confined almost exclusively to a region of one linkage group. Comparison of sorghum and maize maps indicated high correspondence between the two genomes in terms of loci order and genetic distance. Many loci linked in maize (45 of 55) were also linked in sorghum. Instances of both conserved and rearranged locus orders were detected.  相似文献   

11.
Genetic mapping using molecular markers such as restriction fragment length polymorphisms (RFLPs) has become a powerful tool for plant geneticists and breeders. Like many economically important polyploid plant species, detailed genetic studies of hexaploid tall fescue (Festuca arundinacea Schreb.) are complicated, and no genetic map has been established. We report here the first tall fescue genetic map. This map was generated from an F2 population of HD28-56 by Kentucky-31 and contains 108 RFLP markers. Although the two parental plants were heterozygous, the perennial and tillering growth habit, high degree of RFLP, and disomic inheritance of tall fescue enabled us to identify the segregating homologous alleles. The map covers 1274 cM on 19 linkage groups with an average of 5 loci per linkage group (LG) and 17.9 cM between loci. Mapping the homoeologous loci detected by the same probe allowed us to identify five homoeologous groups within which the gene orders were found to be generally conserved among homoeologous chromosomes. An exception was homoeologous group 5, in which only 2 of the 3 homoeologous chromosomes were identified. Using 12 genome-specific probes, we were able to assign several linkage groups to one of the three genomes (PG1G2) in tall fescue. All the loci detected by the 11 probes specific to the G1 and/or G2 genomes, with one exception, identified loci located on 4 chromosomes of two homoeologous groups (LG2a, LG2c, LG3a, and LG3c). A P-genome-specific probe was used to map a locus on LG5c. Comparative genome mapping with maize probes indicated that homoeologous group 3 and 2 chromosomes in tall fescue corresponded to maize chromosome 1. Difficulties and advantages of applying RFLP technology in polyploids with high levels of heterozygosity are discussed.Journal Series No. 12, 190  相似文献   

12.
To map the QTLsof Fusarium moniliforme ear rot resistance inZea mays L., a total of 230 F2 individuals, derived from a single cross between inbred maize lines R15 (resistant) and Ye478 (susceptible), were genotyped for genetic map construction using simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP) markers. We used 778 pairs of SSR primers and 63 combinations of AFLP primers to detect the polymorphisms between parents, R15 and Ye478. From the polymorphic 30 AFLP primer combinations and 159 SSR primers, we scored 260 loci in the F2 population, among which 8 SSR and 13 AFLP loci could not be assigned to any of the linkage groups. An integrated molecular genetic linkage map was constructed by the remaining 151 SSR and 88 AFLP markers, which distributed throughout the 10 linkage groups of maize and spanned the genome of about 3463.5 cM with an average of 14.5 cM between two markers. On 4 chromosomes, we detected 5 putative segregation distortion regions (SDRs), including 2 new ones (SDR2 and SDR7). The other 3 SDRs were located near the regions where gametophyte genes were mapped, indicating that segregation distortion could be partially caused by gametophytic factors.  相似文献   

13.
Cotton genome mapping with new microsatellites from Acala ‘Maxxa’ BAC-ends   总被引:15,自引:3,他引:12  
Fine mapping and positional cloning will eventually improve with the anchoring of additional markers derived from genomic clones such as BACs. From 2,603 new BAC-end genomic sequences from Gossypium hirsutum Acala ‘Maxxa’, 1,316 PCR primer pairs (designated as MUSB) were designed to flank microsatellite or simple sequence repeat motif sequences. Most (1164 or 88%) MUSB primer pairs successfully amplified DNA from three species of cotton with an average of three amplicons per marker and 365 markers (21%) were polymorphic between G. hirsutum and G. barbadense. An interspecific RIL population developed from the above two entries was used to map 433 marker loci and 46 linkage groups with a genetic distance of 2,126.3 cM covering approximately 45% of the cotton genome and an average distance between two loci of 4.9 cM. Based on genome-specific chromosomes identified in G. hirsutum tetraploid (A and D), 56.9% of the coverage was located on the A subgenome while 39.7% was assigned to the D subgenome in the genetic map, suggesting that the A subgenome may be more polymorphic and recombinationally active than originally thought. The linkage groups were assigned to 23 of the 26 chromosomes. This is the first genetic map in which the linkage groups A01 and A02/D03 have been assigned to specific chromosomes. In addition the MUSB-derived markers from BAC-end sequences markers allows fine genetic and QTL mapping of important traits and for the first time provides reconciliation of the genetic and physical maps. Limited QTL analyses suggested that loci on chromosomes 2, 3, 12, 15 and 18 may affect variation in fiber quality traits. The original BAC clones containing the newly mapped MUSB that tag the QTLs provide critical DNA regions for the discovery of gene sequences involved in biological processes such as fiber development and pest resistance in cotton. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
We constructed a genetic map on Brassica nigra based on a segregating population of 83 F2 individuals. Three different types of molecular markers were used to build the map including isozymes, restriction fragment length polymorphisms (RFLP), and random amplified polymorphic DNA (RAPD). The final map contained 124 markers distributed in 11 linkage groups. The map covered a total distance of 677 cM with the markers distributed within a mean distance of 5.5cM. Of the sequences found in the B. nigra map, 40% were duplicated and organized into three different types of arrangements. They were either scattered throughout the genome, organized in tandem, or organized in blocks of duplicated loci conserved in more than 1 linkage group.  相似文献   

15.
Simple sequence repeats (SSRs), also known as microsatellites, are highly variable DNA sequences that can be used as markers for the genetic analysis of plants. Three approaches were followed for the development of PCR primers for the amplification of DNA fragments containing SSRs from sorghum [Sorghum bicolor (L.) Moench]: a search for sorghum SSRs in public DNA databases; the use of SSR-specific primers developed in the Poaceae species maize (Zea mays L.) and seashore paspalum grass (Paspalum vaginatum Swartz); and the screening of sorghum genomic libraries by hybridization with SSR oligonucleotides. A total of 49 sorghum SSR-specific PCR primer pairs (two designed from GenBank SSR-containing sequences and 47 from the sequences of genomic clones) were screened on a panel of 17 sorghum and one maize accession. Ten primer pairs from paspalum and 90 from maize were also screened for polymorphism in sorghum. Length polymorphisms among amplification products were detected with 15 of these primer pairs, yielding diversity values ranging from 0.2 to 0.8 with an average diversity of 0.56. These primer pairs are now available for use as markers in crop improvement and conservation efforts.  相似文献   

16.
The duplicated and rearranged nature of plant genomes frequently complicates identification, chromosomal assignment and eventual manipulation of DNA segments. Separating an individual chromosome from its native complement by adding it to an alien genetic background together with the generation of radiation hybrids from such an addition line can enable or simplify structural and functional analyses of complex duplicated genomes. We have established fertile disomic addition lines for each of the individual maize chromosomes, except chromosome 10, with oat as the host species; DNA is available for chromosome 10 in a haploid oat background. We report on instability and transmission in disomic additions of maize chromosomes 1, 5, and 8; the chromosome 2, 3, 4, 6, 7, and 9 additions appear stable. The photoperiodic response of the two recovered maize chromosome 1 addition lines contrasts to the long-day flowering response of the oat parents and the other addition lines. Only when grown under short days did maize chromosome 1 addition lines set seed, and only one line transmitted the maize chromosome 1 to offspring. Low resolution radiation hybrid maps are presented for maize chromosomes 2 and 9 to illustrate the use of radiation hybrids for rapid physical mapping of large numbers of DNA sequences, such as ESTs. The potential of addition and radiation hybrid lines for mapping duplicated sequences or gene families to chromosome segments is presented and also the use of the lines to test interactions between genes located on different maize chromosomes as observed for ectopic expression of cell fate alterations. Electronic Publication  相似文献   

17.
 A sorghum composite linkage map was constructed with two recombinant inbred line populations using heterologous probes already mapped on maize and sugarcane. This map includes 199 loci revealed by 188 probes and distributed on 13 linkage groups. A comparison based on 84 common probes was performed between the sorghum composite map and a map of a sugarcane (Saccharum spp.) cultivar being developed and presently comprising 10 tentative linkage groups. A straight synteny was observed for 2 pairs of linkage groups; in two cases, 1 sorghum linkage group corresponded to 2 or 3 sugarcane linkage groups, respectively; in two cases 1 sugarcane link- age group corresponded to 2 separate sorghum linkage groups; for 2 sorghum linkage groups, no complete correspondance was found in the sugarcane genome. In most cases loci appeared to be colinear between homoeologous chromosomal segments in sorghum and sugarcane. These results are discussed in relation to published data on sorghum genomic maps, with specific reference to the genetic organization of sugarcane cultivars, and they, illustrate how investigations on relatively simple diploid genomes as sorghum will facilitate the mapping of related polyploid species such as sugarcane. Received: 12 August 1996 / Accepted: 30 August 1996  相似文献   

18.
Construction of genetic linkage maps is an important first step for a variety of genomic applications, such as selective breeding in aquaculture, comparative studies of chromosomal evolution and identification of loci that have played key roles in the evolution of a species. Here we present a sex-specific linkage map for coho salmon. The map was constructed using 148 AFLP markers, 133 microsatellite loci and the phenotypic locus SEX . Twenty-four linkage groups spanning 287.4 cM were mapped in males, and 33 linkage groups spanning 429.7 cM were mapped in females. Several male linkage groups corresponded to two female linkage groups. The combination of linkage groups across both sexes appeared to characterize regions of 26 chromosomes. Two homeologous chromosomes were identified based on information from duplicated loci. Homologies between the coho and rainbow trout maps were examined. Eighty-six loci were found to form common linkage relationships between the two maps; these relationships provided evidence for whole-arm fissions, fusions and conservation of chromosomal regions in the evolution of these two species.  相似文献   

19.
The small genome of sorghum (Sorghum bicolor L. Moench.) provides an important template for study of closely related large-genome crops such as maize (Zea mays) and sugarcane (Saccharum spp.), and is a logical complement to distantly related rice (Oryza sativa) as a "grass genome model." Using a high-density RFLP map as a framework, a robust physical map of sorghum is being assembled by integrating hybridization and fingerprint data with comparative data from related taxa such as rice and using new methods to resolve genomic duplications into locus-specific groups. By taking advantage of allelic variation revealed by heterologous probes, the positions of corresponding loci on the wheat (Triticum aestivum), rice, maize, sugarcane, and Arabidopsis genomes are being interpolated on the sorghum physical map. Bacterial artificial chromosomes for the small genome of rice are shown to close several gaps in the sorghum contigs; the emerging rice physical map and assembled sequence will further accelerate progress. An important motivation for developing genomic tools is to relate molecular level variation to phenotypic diversity. "Diversity maps," which depict the levels and patterns of variation in different gene pools, shed light on relationships of allelic diversity with chromosome organization, and suggest possible locations of genomic regions that are under selection due to major gene effects (some of which may be revealed by quantitative trait locus mapping). Both physical maps and diversity maps suggest interesting features that may be integrally related to the chromosomal context of DNA-progress in cytology promises to provide a means to elucidate such relationships. We seek to provide a detailed picture of the structure, function, and evolution of the genome of sorghum and its relatives, together with molecular tools such as locus-specific sequence-tagged site DNA markers and bacterial artificial chromosome contigs that will have enduring value for many aspects of genome analysis.  相似文献   

20.
 A foxtail millet-rice comparative genetic map was constructed using mapped rice RFLP markers and wheat genomic and cDNA clones with known map position in rice. About 74% and 37% of the cDNA and genomic clones, respectively, were transferable to foxtail millet, confirming that conservation at the DNA level is greatest in genic regions. A high degree of conserved colinearity was observed between the two genomes. Five entire foxtail millet chromosomes appear to be colinear with five entire rice chromosomes. The remaining four foxtail millet linkage groups each show colinearity with segments of two rice chromosomes. The rearrangements of rice chromosomes 3 and 10 to form foxtail millet chromosome IX, and 7 and 9 to form chromosome II are very similar to those required to form maize chromosomes 1 and 7 and sorghum linkage groups C and B, indicating Setaria’s clear taxonomic position within the subfamily of the Panicoideae. Received: 18 December 1996 / Accepted: 4 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号