首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
植物开花时间: 自然变异与遗传分化   总被引:5,自引:0,他引:5  
罗睿  郭建军 《植物学报》2010,45(1):109-118
开花时间是植物的重要生活史性状。对模式植物的研究表明: 从感受内外环境信号开始到最终分化形成功能性花器官的过程涉及复杂的信号转导途径和调控网络; 开花时间受多种因子的调控, 而FT基因作为整合途径成分起到非常关键的作用。植物的花期变异在物种、群体和个体水平上具有复杂的自然变异模式, 且不同植物的花期变异随全球环境变化而具有不同的变异趋势。植物个体之间通过传粉进行的基因交流需要功能性开花时间的一致或重叠, 而花期变异会导致群体之间或群体内部亚群体之间的基因流障碍和遗传分化, 并可能导致邻域或同域的物种形成。该文分析了植物花期变异与群体遗传分化的关系, 认为决定开花时间的基因在物种分化中可能起到关键的作用, 而对开花时间自然变异模式的研究对于揭示晚近分化快速辐射物种的进化模式具有重要意义。  相似文献   

2.
开花时间对植物的繁殖成功至关重要。广泛分布的物种经常发生开花时间的分化, 从而能够更好地适应不同的环境条件。为了探索植物开花行为发生适应性分化的分子机制, 首先要明确调控开花行为的遗传通路。本文梳理了植物各类群调控开花时间的遗传通路, 以期为开花时间适应性分化的分子机制研究提供依据。 植物从营养生长向繁殖转变时, 其开花行为主要受到光照、温度、水分等外界环境因子和赤霉素等内在因素的影响。通过对模式植物拟南芥(Arabidopsis thaliana)和其他类群的研究, 总结出了调控植物开花时间的6条通路, 包括日照长度和光质影响开花的光依赖通路, 长时间冷暴露后促进植物开花的春化通路, 高温或低温环境影响开花的温度通路, 以及赤霉素通路、年龄通路和自主通路3条内部调节过程。植物开花时间调控的6条上游通路信号传递到下游的开花整合基因FT(FLOWERING LOCUS T)和SOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), 整合基因将这些复杂的调节因子整合后进一步传递到下游花分生组织, 从而启动开花。此外, 非编码RNA、转座子对开花时间的调控也具有重要作用。部分遗传通路被证实在植物适应环境的过程中起到了重要作用。目前对植物开花调控的研究已经有一百多年历史, 理论相对成熟。然而, 仍然存在许多具有争议和未解决的问题, 如开花基因的表达方式、开花行为的特殊调控机制、开花时间变异的适应性意义等等, 需要更进一步的研究。  相似文献   

3.
植物从营养生长到生殖生长的转变是开花发育的关键,在合适的时间开花对植物的生长和繁衍极为重要,植物开花时间的调控对农业生产发展意义重大。植物开花是由遗传因子和环境因子协同调节的一个复杂过程。近年来,对不同植物开花调控的研究,特别是对模式植物拟南芥(Arabidopsis thaliana(L.) Heynh.)的开花调控研究取得了显著进展,已探明开花时间分子调控的6条主要途径分别是光周期途径、春化途径、自主途径、温度途径、赤霉素途径和年龄途径。各遗传调控途径既相互独立又相互联系,构成一个复杂的开花调控网络。本文综述了模式植物拟南芥开花时间调控分子机制相关研究的最新进展,并对未来的研究进行了展望。  相似文献   

4.
植物CO基因研究进展   总被引:5,自引:0,他引:5  
CO(constans)是植物开花时间光周期调控途径中的一个重要基因.目前从拟南芥、水稻、油菜、马铃薯等多个物种中都已经克隆到CO同源基因.CO基因在不同物种中具有保守的锌指结构和核定位区域,但是不同植物中的作用机理并不完全相同.序列分析表明该基因在被子植物与裸子植物之间、双子叶植物与单子叶植物之间以及不同科、属的植物之间均有明显分化,说明CO基因可能在植物进化中起到了重要作用.本文综述了近年来有关植物CO基因的研究进展,并对其在物种中的进化进行分析,为CO基因进一步研究提供参考.  相似文献   

5.
张文标 《生态学报》2008,28(8):4037-4046
野外定点观测了夏蜡梅在3个群体的开花物候进程,分别计算了结实率和结籽率,并分析了始花日和开花同步性等开花物候指数对其传粉成功的影响,还进一步从个体水平分析了开花时间对传粉成功的影响.结果如下:夏蜡梅的花期在5月上旬到6月下旬,开花物候参数在不同群体间存在较明显的差异,而各群体的开花进程均呈明显的"单峰型",且开花同步性高,为"大量开花模式".群体内各开花物候参数与传粉成功相关性不明显;群体间开花物候参数中的始花日和开花中值日与结实率呈极显著的负相关,终花日与结实率和结籽率分别呈极显著和显著的负相关.个体水平不同开花时间对结实率有着显著影响(F=15.960,df=3,P<0.01),而对结籽率影响不大(F=2.358,df=3,P=0.073).相同海拔高度小生境不同对夏蜡梅的传粉成功影响不大,但不同海拔高度对夏蜡梅的传粉成功影响显著.作为一种濒危物种,夏蜡梅这种"集中开花模式"可以吸引更多的传粉昆虫,有助于其获得更多的传粉成功,但增加了其花粉在个体内及邻近个体间的传递,不利于花粉在群体间的扩散,而导致了一定程度的自交和近交衰退,这可能是夏蜡梅群体遗传变异性低、遗传分化明显及濒危的一个原因.  相似文献   

6.
濒危植物长柄双花木开花物候与生殖特性   总被引:34,自引:4,他引:30  
研究了长柄双花木开花过程中花部表型的变化。连续4a对其野生种群、1a对人工种群的开花物候进行了观察,并运用相对开花强度和同步性等开花物候指数分析了开花物候对其生殖的影响。结果如下:长柄双花木开花时间为9月上、中旬至11月中、下旬;单花花期一般为6~7d,单花依其形态和散粉特征可以分为4个时期:散粉前期、散粉初期、散粉盛期和凋谢期。个体开花持续时间49~55d,种群花期历时63~71d。种群内不同年度间开花物候指数没有显著差异,而种群间则存在显著差异,野生种群开花进程为渐进式单峰曲线。人工种群则为“钟”形曲线,二者均属于“集中开花模式”。长柄双花木具有2个相对开花强度的分异趋势,这种分异趋势具有进化意义。开花物候指数与生殖间的相关分析表明,始花时间与开花数量、座果率及花期长度之间均具显著负相关关系,而开花数量与花期长度之间则呈显著正相关,但均为线性相关。长柄双花木开花物候在种群间的差异和种群内年度间的相似性说明,其开花时间可能是由与其相关的复杂的微生境特征和(或)由其遗传因子决定的,同时也反映了种群间的遗传分异和种群内个体间的遗传一致性。作为一种濒危物种,长柄双花木在这种环境的选择压力之下,形成了“大量、集中开放的花”的开花模式,吸引到更多的传粉者的访问,从而达到生殖成功。  相似文献   

7.
高等植物开花诱导研究进展   总被引:19,自引:0,他引:19  
孙昌辉  邓晓建  方军  储成才 《遗传》2007,29(10):1182-1182―1190
高等植物由营养生长向生殖生长转换的过程称为开花诱导。开花诱导过程由遗传和外界环境两个因素决定, 受错综复杂的网络信号传导途径调控。近年来, 在双子叶模式植物拟南芥中, 开花诱导研究取得了很大进展, 探明了控制开花诱导的4条主要途径(光周期途径、春化途径、自主途径和GA途径)及调控机制。研究也表明, 开花基因在拟南芥、水稻以及其他高等植物之间具有很高的保守性。文章对相关研究的最新进展作一综述, 并指出了目前研究中存在的问题及相应的研究对策。  相似文献   

8.
系统评述了高等植物开花时程的调控与植物光受体的联系.重点说明了控制开花时程的遗传途径以及光周期途径的有关基因的研究进展.影响高等植物开花的最重要的因子之一便是光周期,光周期对高等植物开花的调控是通过相关基因间的相互作用来实现的,这些基因包括参与花启动发育控制基因,昼夜节律时间钟调控基因及光受体信号转导基因.近5年左右的时间通过对拟南芥及其一系列突变体的研究为我们展示了这一热门领域的广阔的前景.  相似文献   

9.
开花是植物生长发育的关键转折,与种子生产和作物产量密切相关。开花转变受到复杂的基因网络调控,许多开花相关基因通过可变剪接产生多种转录本,调控开花时间。文中从多个角度系统地综述了可变剪接调控植物开花的分子机制,并对将来的研究进行了展望。  相似文献   

10.
中国特有植物血水草开花物候与生殖特性   总被引:2,自引:0,他引:2  
于2008年3-5月对分布在井冈山的血水草(Eomecon chionantha Hance )5个自然种群的开花物候进行了观察,运用开花振幅、相对开花强度和开花同步性等指数研究了其开花物候特征及其对该种生殖成功的影响.结果表明:血水草开花时间为3月下旬-5月上旬,种群花期历时24 ~46 d,个体平均开花持续时间为11~21 d,单花花期一般为3~5d;井冈山血水草种群的开花物候进程呈单峰曲线模式具有一个开花高峰期,表现出一种“集中开花模式”;与大多数亚热带植物一样,血水草具有较低的相对开花强度,分布频率集中在10% ~30%.开花物候指数与生殖间的相关分析结果表明:始花时间与花期持续时间呈显著负相关,而与开花数和坐果率呈显著正相关;花期持续时间与开花数和坐果率呈显著正相关;同步性指数与始花时间、开花数、花期持续时间呈负相关.血水草“集中开花模式”是其在长期的进化过程中适应周围气候条件及生境的一种生殖保障.  相似文献   

11.
Flowering is a major developmental phase change that transforms the fate of the shoot apical meristem (SAM) from a leaf-bearing vegetative meristem to that of a flower-producing inflorescence meristem. In Arabidopsis, floral meristems are specified on the periphery of the inflorescence meristem by the combined activities of the FLOWERING LOCUS T (FT)–FD complex and the flower meristem identity gene, LEAFY ( LFY ). Two redundant functioning homeobox genes, PENNYWISE ( PNY ) and POUND-FOOLISH ( PNF ), which are expressed in the vegetative and inflorescence SAM, regulate patterning events during reproductive development, including floral specification. To determine the role of PNY and PNF in the floral specification network, we characterized the genetic relationship of these homeobox genes with LFY and FT . Results from this study demonstrate that LFY functions downstream of PNY and PNF. Ectopic expression of LFY promotes flower formation in pny pnf plants, while the flower specification activity of ectopic FT is severely attenuated. Genetic analysis shows that when mutations in pny and pnf genes are combined with lfy , a synergistic phenotype is displayed that significantly reduces floral specification and alters inflorescence patterning events. In conclusion, results from this study support a model in which PNY and PNF promote LFY expression during reproductive development. At the same time, the flower formation activity of FT is dependent upon the function of PNY and PNF.  相似文献   

12.
植物开花时间调控的信号途径   总被引:17,自引:1,他引:16  
曾群  赵仲华  赵淑清 《遗传》2006,28(8):1031-1036
开花是植物从营养生长到生殖生长的一个重要转折点。花启动的时机对生殖生长的成功至关重要。开花时间受内在因子和环境因子的共同调节。通过对拟南芥的分子遗传学研究,确定至少存在4条调控开花时间的信号途径,即光周期途径、春化途径、自主途径和赤霉素途径。本文以拟南芥 (Arabidopsis thaliana) 为主要研究对象简要综述了近年来在开花时间调控领域的研究进展。  相似文献   

13.
开花是指植物从营养生长转变到生殖生长的生理过程, 是植物个体发育和后代繁衍的中心环节, 既受遗传基础决定,同时又受到温度和光周期等多种环境因素的调控。在拟南芥中, 已经分离了大量的与开花相关的基因, 从遗传学上已初步形成了一个开花调控的网络。组蛋白甲基化是植物发育过程的重要调节方式, 近年来关于其参与开花调控的研究有了重要进展。本文综述了具有代表性的组蛋白H3赖氨酸甲基化修饰参与调控植物开花发育的机制, 提出该研究领域的发展方向和前景。  相似文献   

14.
开花是指植物从营养生长转变到生殖生长的生理过程,是植物个体发育和后代繁衍的中心环节,既受遗传基础决定,同时又受到温度和光周期等多种环境因素的调控。在拟南芥中,已经分离了大量的与开花相关的基因,从遗传学上已初步形成了一个开花调控的网络。组蛋白甲基化是植物发育过程的重要调节方式,近年来关于其参与开花调控的研究有了重要进展。本文综述了具有代表性的组蛋白H3赖氨酸甲基化修饰参与调控植物开花发育的机制,提出该研究领域的发展方向和前景。  相似文献   

15.
Flowering plants go through several phases between regular stem growth and the actual production of flower parts. The stepwise conversion of vegetative into inflorescence and floral meristems is usually unidirectional, but under certain environmental or genetic conditions, meristems can revert to an earlier developmental identity. Vegetative meristems are typically indeterminate, producing organs continuously, whereas flower meristems are determinate, shutting down their growth after reproductive organs are initiated. Inflorescence meristems can show either pattern. Flower and inflorescence development have been investigated in Gerbera hybrida, an ornamental plant in the sunflower family, Asteraceae. Unlike the common model species used to study flower development, Gerbera inflorescences bear a fixed number of flowers, and the architecture of the flowers differ in that Gerbera ovaries are inferior (borne below the perianth). This architectural difference has been exploited to show that floral meristem determinacy and identity are spatially and genetically distinct in Gerbera, and we have shown that a single SEPALLATA-like MADS domain factor controls both flower and inflorescence meristem fate in the plant. Although these phenomena have not been directly observed in Arabidopsis, the integrative role of the SEPALLATA function in reproductive meristem development may be general for all flowering plants.  相似文献   

16.
The flower of rice diverged from those of model eudicot species such as Arabidopsis, Antirrhinum, or Petunia, and is thus of great interest in developmental and evolutionary biology. Specific to grass species, including rice, are the structural units of the inflorescence called the spikelet and floret, which comprise grass-specific peripheral organs and conserved sexual organs. Recent advances in molecular genetic studies have provided an understanding of the functions of rapidly increasing numbers of genes involved in rice flower development. The genetic framework of rice flower development is in part similar to that of model eudicots. However, rice also probably recruits specific genetic mechanisms, which probably contribute to the establishment of the specific floral architecture of rice. In this review, the molecular genetic mechanisms of rice flowering are outlined, focusing on recent information and in comparison with those of model eudicots.  相似文献   

17.
18.
Thomas  Brian 《Annals of botany》2007,99(1):206-207
Flowering is at the heart of plant biology. As the organ forsexual reproduction, the flower is the site of genetic recombinationand the source of genetic diversity and, through seed production,the site of multiplication and dispersal. Grains produced throughthe flowering process provide the components of staple dietsfor most of the world's population. Flowering has also had aprominent position in the molecular and genetic revolution inthe last two decades where models of flower development, suchas Arabidopsis and Antirrhinum, have provided leading insightsinto the mechanisms controlling development, morphogenesis,differentiation and  相似文献   

19.
We review functional data on MADS-box genes, recent phylogenetic analyses of these coding regions, and their roles in the development and evolution of key morphological innovations in plants. We map the origin of important morphological structures in particular diverse stages of the life cycle in different plant clades onto organismal phylogenies, and present relevant molecular genetic aspects of development related to the MADS-box genes. We focus on reproductive structures of the sporophyte because most functional characterizations have been done of MADS-box genes involved in flower development. We discuss MADS-box evolution in flowering plants, but we also review studies in the other nonflowering vascular plants, gymnosperms (conifers and gnetales), and ferns and preliminary data from the algae. We suggest that floral (e.g. flowering time, inflorescence, and flower meristem identity) MADS-box and nonfloral plant MADS-box genes should be the focus of future comparative research. Cloning and functional analyses of MADS-box genes in bryophytes, particularly in the experimental system Physcomitrella patens (Hedw.) B.S.G., are needed. The ABC model of floral organ specification is an excellent general representation of an important network of genes; however, formal analytical tools are required to integrate data on complex gene interaction in comparative analyses. This and other analytical approaches to constructing gene network models will help to frame homology hypotheses in an evolutionary and developmental framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号