首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The levels of amino acids in globus pallidus, a structure heavily innervated with gamma-aminobutyric acid (GABA)-ergic terminals but few glutamergic terminals, were compared with the levels in neostriatum, a structure richly innervated with glutamergic terminals but intermediate in GABAergic terminals. The level of glutamate in neostriatum was twice as high as in globus pallidus whereas the level of GABA in globus pallidus was three times higher than in neostriatum. The level of aspartate was similar in both regions whereas the level of glutamine was correlated with the level of glutamate. Methionine sulfoximine, a glutamine synthetase inhibitor, reduced the level of glutamine to 10-20% of control in both structures. This reduction was accompanied by the largest decrease in the level of glutamate in neostriatum, indicating that transmitter glutamate turns over more rapidly than other glutamate pools. Likewise, insulin decreased the levels of glutamate and glutamine more in neostriatum than in globus pallidus. gamma-Vinyl GABA increased the level of GABA in globus pallidus more than in neostriatum although the percent increase was largest in neostriatum. Treatment with gamma-vinyl GABA was accompanied by a large reduction in the level of GABA, indicating that a substantial proportion of the glutamine pool is linked to GABA metabolism.  相似文献   

2.
苍白球γ-氨基丁酸能神经传递及其与神经系统疾病的关系   总被引:1,自引:0,他引:1  
Chen L  Yung WH 《生理学报》2004,56(4):427-435
苍白球是基底神经节间接环路的重要核团,在机体运动功能调节中发挥重要作用。近年来,苍白球在基底神经节正常及异常功能调节中的重要性已日渐受到重视。然而,目前对苍白球内各种神经递质系统的功能活动了解较少。GABA是苍白球主要的神经递质。采用电生理记录、免疫组织化学及行为测试等实验方法,人们对大鼠苍白球GABA能神经传递系统的受体分布及功能活动有了新的认识。形态学研究揭示,苍白球存在GABAA受体及其苯二氮卓结合位点和GABAB受体。在亚细胞水平,GABAA受体主要位于对称性突触(GABA能突触)的突触后膜,而GABAB受体则位于对称性突触和非对称性突触(兴奋性突触)的突触前膜及突触后膜。功能学研究进一步揭示,激活苍白球突触前膜GABAB自身和异源性受体可分别减少GABA和谷氨酸释放;激活突触后膜GABAB受体,可引起苍白球神经元超极化。除GABAB受体外,激活苍白球GABAA受体苯二氮卓结合位点及阻断GABA重摄取可延长GABA电流持续时间,从而改变苍白球神经元兴奋性。与离体实验结果相一致,激活苍向球GABAB受体和苯二氮卓结合位点及阻断GABA重摄取可引起整体动物旋转行为。苍白球GABA神经递质系统与帕金森病病因学及癫痫发病有关。已证实,苍白球神经元放电频率的降低及簇状放电的产生与帕金森病运动减少及静止性震颤等症状直接相关。此外,电牛理及行为学实验发现,新型抗癫痫药物替加平可调节苍白球神经元功能活动.这为进一步了解苍白球与癫痫发病的关系提供了新的理论及实验依据。  相似文献   

3.
In normal rats, globus pallidus neurons are excited by the systemic administration of postsynaptically active doses of apomorphine. The role of the striatum in mediating this phenomenon was examined by investigating the effects of apomorphine on neuronal activity in the globus pallidus and on turning behavior in rats with unilateral quinolinic acid lesions of the striatum. The lesion markedly reduced striatal choline acetyltransferase activity and GABA content and significantly attenuated apomorphine's effect on the activity of pallidal neurons. Both the extent of attenuation of the electrophysiological response of pallidal neurons in lesioned animals and the neurotoxin-induced decreases in choline acetyltransferase activity and GABA content in the caudal striatum were correlated with the degree of apomorphine-induced turning. The data indicate that striatopallidal neurons contribute to apomorphine's excitatory effect on the activity of pallidal neurons in normal animals.  相似文献   

4.
Adrenalectomy (ADX) has been useful for a good in vivo model for apoptosis in the hippocampus by the absence of corticosteroids following ADX. In some neurodegenerative diseases, GABAergic neurons are more resistant to neuronal damage as compared with glutamatergic neurons. In the present study, we observed chronological changes in three GABA degradation enzymes, e.g., GABA transaminase (GABA-T), succinic semialdehyde dehydrogenase (SSADH) and succinic semialdehyde reductase (SSAR) immunoreactivity and protein levels in the gerbil hippocampal CA1 region after ADX. Changes in their immunoreactivities were distinct in the stratum pyramidale of the CA1 region. GABA-T immunoreactivity and protein level were significantly increased in the CA1 region 3 h after ADX, in contrast, SSAR and SSADH immunoreactivity and protein level were increased 12 h and 3–12 h, respectively, after ADX. These results suggest that the increases of GABA-T, SSADH and SSAR immunoreactivity and protein levels in the hippocampal CA1 region in ADX gerbils may be associated with the control of GABA levels in this region.  相似文献   

5.
6.
Triple probe microdialysis was employed to investigate whether striatal NR2A and NR2B subunit containing NMDA receptors regulate the activity of striato-pallidal and striato-nigral projection neurons. Probes were implanted in the striatum, ipsilateral globus pallidus and substantia nigra reticulata. Intrastriatal perfusion with the NR2A subunit selective antagonist ( R )-[( S )-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) reduced pallidal GABA and increased nigral glutamate (GLU) release whereas perfusion with the NR2B subunit selective antagonist ( R -( R *, S *)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol (Ro 25-6981) reduced nigral GABA and elevated striatal and pallidal GLU release. To confirm that changes in GABA levels were because of blockade of (GLUergic-driven) tonic activity of striatofugal neurons, tetrodotoxin was perfused in the striatum. Tetrodotoxin reduced both pallidal and nigral GABA release without changing GLU levels. To investigate whether striatal NR2A and NR2B subunits were also involved in phasic activation of striatofugal neurons, NVP-AAM077 and Ro 25-6981 were challenged against a NMDA concentration able to evoke GABA release in the three areas. Both antagonists prevented the NMDA-induced striatal GABA release. NVP-AAM077 also prevented the NMDA-induced surge in GABA release in the globus pallidus, whereas Ro 25-6981 attenuated it in the substantia nigra. We conclude that striatal NMDA receptors containing NR2A and NR2B subunits preferentially regulate the striato-pallidal and striato-nigral projection neurons, respectively.  相似文献   

7.
8.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12–24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

9.
It is well established that GABA degradation may play a key role in epileptogenesis. However, whether or not the expression of GABA-transaminase (GABA-T), which catalyzes GABA degradation and participates in the neuronal metabolism via GABA shunt, changes chronologically after on-set of seizure remains to be clarified. To identify the change of GABA-T expression in seizure, GABA-T expression in the gerbil hippocampus, associated with different sequelae of spontaneous seizures, was investigated. The distribution pattern of GABA-T immunoreactive neurons in the hippocampus between the seizure-resistant and pre-seizure group of seizure sensitive gerbils was similar. Interestingly, at 30 min postictal, the enhancement of GABA-T immunoreactivity in the perikarya was apparently observed. This contrasted with the decline in GABA-T immunoreactivity in the granular and pyramidal layer. At 12-24 h postictal, GABA-T immunoreactivity in the hilar neurons had declined significantly. However, the GABA-T immunoreactivity in the granular layer increased. These findings suggest that in the gerbil, the alteration in GABA-T expressions may play an important role in the self-recovery mechanism from seizure attack via both GABA degradation and regulation of neuronal metabolism.  相似文献   

10.
Neural mechanisms in disorders of movement   总被引:2,自引:0,他引:2  
1. Experimental models of ballism, chorea and Parkinson's disease have been developed in the primate, and the underlying neural mechanisms which mediate these disorders of movement have been investigated using the 2-deoxyglucose uptake technique. 2. In ballism, the subthalamic nucleus is either lesioned or underactive. Because of the excitatory nature of subthalamic efferent fibres, this leads to abnormal underactivity of neurons in the medical segment of the globus pallidus which project to the ventral anterior and ventral lateral nuclei of the thalamus, and to the pedunculopontine nucleus of the caudal midbrain. 3. In chorea, there is underactivity of GABAergic striatal (putaminal) neurons which project to the lateral segment of the globus pallidus. This leads to overacting of lateral pallidal neurons and, thus, physiological inhibition of the subthalamic nucleus. Common neural mechanisms, therefore, underlie the appearance of dyskinesia in ballism and chorea. 4. In parkinsonism, there is overactivity of putaminal neurons projecting to the lateral pallidal segment. This results in excessive inhibition of lateral pallidal neurons and, as a consequence, disinhibition of the subthalamic nucleus. Overactivity of the subthalamic nucleus provides excessive drive upon medial pallidal neurons projecting to thalamic and pedunculopontine nuclei.  相似文献   

11.
The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.  相似文献   

12.
1. To investigate the potency of a novel immunotoxin that is specific for glutamate receptor GluR1, a subunit of the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)-type receptor channel, immunolesioning was performed.2. A ribosome-inactivating protein, trichosanthin (TCS), was isolated and conjugated to the goat anti-rabbit IgG antibody molecule. The anti-rabbit antibody–TCS complex was preincubated with GluR1-specific rabbit antibody to produce a GluR1-specific immunotoxin. The immunotoxin was unilaterally administered into either the neostriatum or the lateral ventricle of rats.3. Immunoreactivity for GluR1 or GluR4 was revealed in perfuse-fixed sections of the neostriatum obtained from the lesioned and control animals by immunocytochemistry. After ventricular or striatal injections of the immunotoxin, depletions of GluR1-immunoreactive neurons, the presumed GABAergic interneurons in the neostriatum, were found. Depletions of GluR4-immunoreactive perikarya, the presumed same subpopulation of striatal interneurons, were also found. In addition, no change in the pattern of distribution of immunoreactivity for GluR2 or glial fibrillary acidic protein was found in the lesioned neostriatum. These results indicate that the novel GluR1 immunotoxin is potent and specific.4. In addition, striatal application of the immunotoxin caused a greater depletion in the number of GluR1-immunoreactive neurons. The present results also indicate that the route of immunotoxin application may be important in producing specific lesions.  相似文献   

13.
14.
Pallidal dopamine, GABA and the endogenous opioid peptides enkephalins have independently been shown to be important controllers of sensorimotor processes. Using in vivo microdialysis coupled to liquid chromatography-mass spectrometry and a behavioral assay, we explored the interaction between these three neurotransmitters in the rat globus pallidus. Amphetamine (3 mg/kg i.p.) evoked an increase in dopamine, GABA and methionine/leucine enkephalin. Local perfusion of the dopamine D(1) receptor antagonist SCH 23390 (100 μM) fully prevented amphetamine stimulated enkephalin and GABA release in the globus pallidus and greatly suppressed hyperlocomotion. In contrast, the dopamine D(2) receptor antagonist raclopride (100 μM) had only minimal effects suggesting a greater role for pallidal D(1) over D(2) receptors in the regulation of movement. Under basal conditions, opioid receptor blockade by naloxone perfusion (10 μM) in the globus pallidus stimulated GABA and inhibited dopamine release. Amphetamine-stimulated dopamine release and locomotor activation were attenuated by naloxone perfusion with no effect on GABA. These findings demonstrate a functional relationship between pallidal dopamine, GABA and enkephalin systems in the control of locomotor behavior under basal and stimulated conditions. Moreover, these findings demonstrate the usefulness of liquid chromatography-mass spectrometry as an analytical tool when coupled to in vivo microdialysis.  相似文献   

15.
Gamma-aminobutyric acid (GABA) neurotransmission in the lateral septum (LS) is implicated in modulating various behavioral processes, including emotional reactivity and maternal behavior. However, identifying the phenotype of GABAergic neurons in the CNS has been hampered by the longstanding inability to reliably detect somal immunoreactivity for GABA or glutamic acid decarboxylase (GAD), the enzyme that produces GABA. In this study, we designed unique probes for both GAD65 (GAD2) and GAD67 (GAD1), and used fluorescence in Situ hybridization (FISH) with tyramide signal amplification (TSA) to achieve unequivocal detection of cell bodies of GABAergic neurons by GAD mRNAs. We quantitatively characterized the expression and chemical phenotype of GABAergic neurons across each subdivision of LS and in cingulate cortex (Cg) and medial preoptic area (MPOA) in female mice. Across LS, almost all GAD65 mRNA-expressing neurons were found to contain GAD67 mRNA (approximately 95-98%), while a small proportion of GAD67 mRNA-containing neurons did not express GAD65 mRNA (5-14%). Using the neuronal marker NeuN, almost every neuron in LS (> 90%) was also found to be GABA-positive. Interneuron markers using calcium-binding proteins showed that LS GABAergic neurons displayed immunoreactivity for calbindin (CB) or calretinin (CR), but not parvalbumin (PV); almost all CB- or CR-immunoreactive neurons (98-100%) were GABAergic. The proportion of GABAergic neurons immunoreactive for CB or CR varied depending on the subdivisions examined, with the highest percentage of colocalization in the caudal intermediate LS (LSI) (approximately 58% for CB and 35% for CR). These findings suggest that the vast majority of GABAergic neurons within the LS have the potential for synthesizing GABA via the dual enzyme systems GAD65 and GAD67, and each subtype of GABAergic neurons identified by distinct calcium-binding proteins may exert unique roles in the physiological function and neuronal circuitry of the LS.  相似文献   

16.
17.
Function of GABAergic and glutamatergic neurons in the stomach   总被引:1,自引:1,他引:0  
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.  相似文献   

18.
Gamma-aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the central nervous system (CNS). Degradation of GABA in the CNS is catalyzed by the action of GABA transaminase (GABA-T). However, the neuroanatomical characteristics of GABA-T in the gerbil, which is a useful experimental animal in neuroscience, are still unknown. Therefore, we performed a comparative analysis of the distribution of GABA-T in rat and gerbil brains using immunohistochemistry. GABA-T immunoreactive neurons were observed in the regions which contained GABAergic neurons of both animals: corpus striatum; substantia nigra, pars reticulata; septal nucleus; and accumbens nucleus. GABA-T + neurons were restricted to layers III and V in the rat. Unlike the rat GABA-T + neurons were observed in layers II, III, and V of the gerbil cerebral cortex. These results suggest that the expression of GABA-T in the gerbil brain may be similar to that in the rat brain, except in the cerebral cortex.  相似文献   

19.
Wang  X.S.  Ong  W.Y. 《Brain Cell Biology》1999,28(12):1053-1061
The distribution of the GABA transporter GAT-1 was studied by immunocytochemistry and electron microscopy in the monkey basal ganglia. Dense staining was observed in the globus pallidus externa and interna, intermediate in the subthalamic nucleus, and substantia nigra, and light staining in the caudate nucleus and putamen. Staining was observed in axon terminals, but not cell bodies. Electron microscopy showed that the GAT-1 positive axon terminals formed symmetrical synapses, suggesting that they were the terminals of GABAergic neurons. Comparison of areas high in GAT-1 protein with that of GABA showed a good correlation between the density in neuropil staining for GAT-1, and that of GABA.  相似文献   

20.
Alteration in the excitatory/inhibitory neuronal balance is believed to be the underlying mechanism of epileptogenesis. Based on this theory, GABAergic interneurons are regarded as the primary inhibitory neurons, whose failure of action permits hyperactivity in the epileptic circuitry. As a consequence, optogenetic excitation of GABAergic interneurons is widely used for seizure suppression. However, recent evidence argues for the context-dependent, possibly “excitatory” roles that GABAergic cells play in epileptic circuitry. We reviewed current optogenetic approaches that target the “inhibitory” roles of GABAergic interneurons for seizure control. We also reviewed interesting evidence that supports the “excitatory” roles of GABAergic interneurons in epileptogenesis. GABAergic interneurons can provide excitatory effects to the epileptic circuits via several distinct neurological mechanisms. (1) GABAergic interneurons can excite postsynaptic neurons, due to the raised reversal potential of GABA receptors in the postsynaptic cells. (2) Continuous activity in GABAergic interneurons could lead to transient GABA depletion, which prevents their inhibitory effect on pyramidal cells. (3) GABAergic interneurons can synchronize network activity during seizure. (4) Some GABAergic interneurons inhibit other interneurons, causing disinhibition of pyramidal neurons and network hyperexcitability. The dynamic, context-dependent role that GABAergic interneurons play in seizure requires further investigation of their functions at single cell and circuitry level. New optogenetic protocols that target GABAergic inhibition should be explored for seizure suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号