首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liisa Puusepp  Tiiu Koff 《Grana》2013,52(1):54-61
The effect of varying weather conditions on the hourly number of airborne Cladosporium conidia was studied in forest environments during three summers. All factors having diurnal periodicity correlated significantly with the number of spores. Because of the great variation in weather and the interaction of weather factors, the most important factors were not the same for each summer. Temperature was important in each year. Relative humidity was most important in the first rainy summer, and precipitation was more important during the two drier summers than in the first summer. The maximum spore counts were obtained at the onset of rain, indicating the effectiveness of the first rain drops in detaching conidia. The amount of water precipitated also promoted the production of conidia, since it correlated positively with the number of spores in the air several hours later. Spore detachment also seemed to be closely related to decreases in relative humidity and increases in wind velocity which occurred in the morning. An increase in wind velocity from 0.5–1.0 m?s increased the number of spores most effectively.  相似文献   

2.
The concentration of airborne chestnut pollenhas been investigated at four monitoringstations situated in several cities in Galicia(NW Spain) during 1995–1998. Their pollenseason takes place from mid June to thebeginning of August. The annual total chestnutpollen shows differences between years in eachcity. Likewise there are significantdifferences between cities in each year.The pollen concentrations were closelycorrelated with meteorological parameters. Theyincreased with maximum temperatures and hoursof sunshine and they decreased with rainfalland relative humidity.The diurnal variations of pollen concentrationsshow different patterns in urban and ruralareas. Where the spore trap is surrounded byarboreal masses with chestnut as the dominanttree, the pattern shows two peaks, one in theevening (between seven and mid-night) andanother in the morning (between four and one inthe afternoon).  相似文献   

3.
 The effect of an urban climate upon the spatial and temporal distribution of Deuteromycete spores was studied during 1991 using Burkard volumetric spore traps in two areas of Mexico City with different degrees of urbanization. Deuteromycete conidia formed the largest component of the total airborne fungal spore load in the atmosphere of Mexico City, contributing 52% of the spores trapped in an urban-residential area (southern area) and 65% of those in an urban-commercial area (central area). Among the most common spore types, Cladosporium and Alternaria showed a marked seasonal periodicity with significant differences in concentration (P<0.05) between the dry and wet seasons. Maximum conidial concentrations were found during the end of the wet season and the beginning of the cool, dry season (October–December). Daily mean concentrations of the predominant airborne spore types did not differ significantly between the southern and central areas. Daily mean spore concentrations were significantly correlated (P<0.05) in southern and central areas with maximum temperature (south, r = –0.35; central, r = –0.40) and relative humidity (south, r = 0.43; central, r = 0.29) from the previous day. Moreover, multiple regression analysis of spore concentrations with several meteorological factors showed significant interactions between fungal spores, relative humidity and maximum temperature in both areas. The diurnal periodicity of Cladosporium conidia characteristically showed two or three peaks in concentration during the day at 0200–0400, ∼ 1400 and 2000–2200 hours, while that of Alternaria showed only one peak (1200 to 2000 hours) in both areas. Maximum concentrations of these spores generally occurred 2–4 h earlier in the southern than in the central area. The lag in reaching maximum concentrations in the central area probably resulted from differences in the local conditions between the study areas, and from spores transported aerially into the city from distant sources. The analysis of maximum hourly concentrations of Cladosporium and Alternaria spores during 1 month of the dry season (February), and another month of the wet season (September) showed significant differences between the two study areas. Environmental factors and sources (green areas) affected diurnal changes in conidial concentration in the southern area (urbanization index, UI, 0.25), but not in the central area (UI 0.97). In general, spore concentrations were greatest in the southern area when relative humidities were low, and temperatures and wind velocities were high. It was difficult to establish effects of climatic factors on the spore concentration in the city centre. This probably results from the large amounts of air pollution, the heat island phenomenon, and from the distant origin of trapped conidia obviating aerial transport. Nevertheless, the seasonal and diurnal distributions of conidia found were similar to those reported for other tropical regions of the world. Received: 13 August 1996 / Accepted: 4 December 1996  相似文献   

4.
This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m?3; Mérida 53 spores m?3 and Málaga 35 spores m?3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.  相似文献   

5.
Temporal variation of airborne bracken (Pteridium aquilinum) spores concentration in Salamanca during 10 years from January 1998 to December 2007 were studied by using a Burkard spore trap, and correlations with some meteorological parameters were analyzed. The number of spores that were counted was very low, due probably to the distance between the spore trap and the main bracken populations which were located 70 km away from the city. Long-range transport caused by winds coming from the Second Quadrant (IIQ) is supposed to be responsible for the appearance of bracken spores in Salamanca. The season period from August to late October shows the most intense spore dispersal process, with an early morning distribution along the day. Years 2002 and 2007 with a low quantity of airborne spores were also characterized by low mean temperatures, always under 18°C from May to June. Daily spore concentration shows positive correlation with temperature and sun hours but negative with IVQ winds and with relative humidity. No correlation between daily spore concentration and rainfall was found. Also, a positive correlation between number of spores and IIQ winds was observed during the main spore season (MSS) and prepeak period (PRE).  相似文献   

6.
Seasonal and diurnal changes in concentrations of airborne basidiomycete spores (basidiospores, rusts, smuts) were studied, using Burkard volumetric spore traps, in two areas of Mexico City with different degrees of urbanization and related to changes in climatic variables through 1991. Basidiomycete spores formed a large component of the total airborne fungal spore load in the atmosphere of Mexico City. They were the second most abundant spore type after Deuteromycotina (Hyphomycetes), forming 32% of the total fungal spores trapped in an urban-residential area and 28% in an urban-commercial area. The most abundant basidiomycete spores were basidiospores although smut-type spores were trapped on more days than basidiospores and rusts on fewer. Basidiospores occurred in concentrations up to 2,000 spores m-3 in the urban-residential area. Basidiospores showed a marked seasonal distribution, especially in the southern area, with their greatest abundance during the wet season. The correlation coefficients associated with regressions between basidiospore concentration and some environmental factors were increased when a lag period of 2 to 4 days was used between environmental measurements and the day of spore collection. Basidiospore concentrations exceeded the 75 percentile concentration (>400 spores m-3) most often when rainfall was up to 6 mm and relative humidity was >70%. Basidiospores showed a diurnal periodicity with greatest concentrations in the early morning. The most common basidiospore type was Coprinus which formed 67% of basidiospores trapped in the southern area and 63% in the central area. Smut spores were trapped on 87% of days through the year while rust spores occurred in only 35%. Both rusts and smuts were present in only small concentrations.  相似文献   

7.
Lettuce downy mildew, caused by the oomycete Bremia lactucae Regel, is a major threat to lettuce production worldwide. Lettuce downy mildew is a polycyclic disease driven by airborne spores. A weather-based dynamic simulation model for B. lactucae airborne spores was developed to simulate the aerobiological characteristics of the pathogen. The model was built using the STELLA platform by following the system dynamics methodology. The model was developed using published equations describing disease subprocesses (e.g., sporulation) and assembled knowledge of the interactions among pathogen, host, and weather. The model was evaluated with four years of independent data by comparing model simulations with observations of hourly and daily airborne spore concentrations. The results show an accurate simulation of the trend and shape of B. lactucae temporal dynamics of airborne spore concentration. The model simulated hourly and daily peaks in airborne spore concentrations. More than 95% of the simulation runs, the daily-simulated airborne conidia concentration was 0 when airborne conidia were not observed. Also, the relationship between the simulated and the observed airborne spores was linear. In more than 94% of the simulation runs, the proportion of the linear variation in the hourly-observed values explained by the variation in the hourly-simulated values was greater than 0.7 in all years except one. Most of the errors came from the deviation from the 1:1 line, and the proportion of errors due to the model bias was low. This model is the only dynamic model developed to mimic the dynamics of airborne inoculum and represents an initial step towards improved lettuce downy mildew understanding, forecasting and management.  相似文献   

8.
Alternaria is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we constructed predictive models for the fungal spore circulation in Szczecin, Poland. Monthly forecasting models were developed for the airborne spore concentrations of Alternaria, which is one of the most abundant fungal taxa in the area. Aerobiological sampling was conducted over 2004–2007, using a Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation; maximum and average wind speed; relative humidity; and maximum, minimum, average, and dew point temperature. The original factors as well as with lags (up to 3 days) were used as the explaining variables. Due to non-linearity and non-normality of the data set, the modelling technique applied was the artificial neural network (ANN) method. The final model was a split model with classification (spore presence or absence) followed by regression for spore seasons and log(x+1) transformed Alternaria spore concentration. All variables except maximum wind speed and precipitation were important factors in the overall classification model. In the regression model for spore seasons, close relationships were noted between Alternaria spore concentration and average and maximum temperature (on the same day and 3 days previously), humidity (with lag 1) and maximum wind speed 2 days previously. The most important variable was humidity recorded on the same day. Our study illustrates a novel approach to modelling of time series with short spore seasons, and indicates that the ANN method provides the possibility of forecasting Alternaria spore concentration with high accuracy.  相似文献   

9.
Summary Urticaceae pollen monitoring was carried out, in the atmosphere of East Perugia during the summer of 1989. In summer the Urticaceae pollen shows a fluctuating diurnal trend, which was analysed daily over six 4-hour periods. The high peaks of thistaxon were recorded in the middle of the day in July and August, and in the morning in June. The percentage pattern of the daily mean pollen concentration of Urticaceae was compared with mean temperature, wind speed, relative humidity and rain, both in the non-rainy days and rainy ones. The best correlations came out comparing pollen concentration and meteoclimatic parameters during non-rainy days. The interpretation of the influence of rainfalls is very difficult owing to their peculiar features in summer.  相似文献   

10.
The concentration of fungal spores in the atmosphere of Madrid was recorded and analyzed for the year 2003. Airborne spores were sampled continuously with a Hirst-type spore trap located on the roof of a building of the School of Pharmacy, at about 8 m above ground level. Correlation between the mean daily spore concentrations and meteorological variables were explored by means of Spearman’s correlation analyses. Seventy spore types were identified, of which the most numerous were Cladosporium, Aspergillaceae (conidia), Coprinus, Agaricales (basidiospores), Ustilago (teliospores) and Pleospora (ascospores). These six types of spores represented more than 70% of the total. Cladosporium represented 41% of the total fungal spores, while Ustilago spores, the concentrations of which in May and June exceeded 47% of the monthly total spore count, constituted the second most important group. Spores reached their highest concentrations in the spring months, and in the autumn, mainly in October. A␣positive significant correlation was found between airborne spore counts and temperature and relative humidity. The results provide a picture of the spectrum of airborne fungal spores present in the atmosphere of Madrid and of the `peak' periods of their presence. Future studies will provide more detailed information on the seasonal dynamics of the spores most frequently found in the air as well as on the extent to which atmospheric conditions influence their release, dispersion and sedimentation processes.  相似文献   

11.
Annual variations in the abundance ofAlternaria spores were related to the length of the spore period for data from Murcia (southeastern Spain). To understand the relationship between the number of spores and climatic factors,Alternaria spore counts for March 1993 to February 1994 were examined by means of correlation and regression analyses with fourteen different weather parameters. The results indicated that there was a tendency forAlternaria spore concentrations to increase with increases in temperature, wind speed and hours of sunshine. Negative correlations were observed with air pressure, wind direction and humidity. Theoretical curves forAlternaria spore counts are given in relation to temperatures during the period studied.  相似文献   

12.
Cladosporium conidia have been shown to be important aeroallergens in many regions throughout the world, but annual spore concentrations vary considerably between years. Understanding these annual fluctuations may be of value in the clinical management of allergies. This study investigates the number of days in summer when spore concentration exceeds the allergenic threshold in relation to regional temperature and precipitation at two sites in England and Wales over 27 years. Results indicate that number of days in summer when the Cladosporium spores are above the allergenic concentration is positively correlated with regional temperature and negatively correlated with precipitation for both sites over the study period. Further analysis used a winter North Atlantic Oscillation index to explore the potential for long-range forecasting of the aeroallergen. For both spore measurement sites, a positive correlation exists between the winter North Atlantic Oscillation index and the number of days in summer above the allergenic threshold for Cladosporium spore concentration.  相似文献   

13.
This study presents the results obtained for airborne Betula pollen between 1992 and 2000 in Ourense, Spain, sampled by volumetric spore-trap (LANZONI VPPS2000). Annual and year-on-year variations were analyzed, and a statistical study of the correlation between daily counts and several meteorological parameters was performed. Birch pollen is present in the atmosphere during March and April in Ourense. Significant differences were observed among the different years. Values obtained for the correlation coefficient between Betula pollen counts and the various meteorological parameters studied indicate, for Ourense, a positive correlation between pollen count and both temperature and sunlight. A negative correlation was recorded for relative humidity. Temperature is thus the determining factor for flowering onset and intensity. Regression equations included values for the days prior to pollen concentration measurement in order to optimize results.  相似文献   

14.
Aerobiological study of Fagaceae pollen in the middle-west of Spain   总被引:1,自引:0,他引:1  
The concentration of airborne Fagaceae pollen in Salamanca and the correlations with some meteorological parameters have been examined. Castanea and Quercus pollen grains were collected from 1998 to 2004 using a Burkard spore trap. No pollen grains of Fagus were found. The main pollen season took place in April and May for Quercus and in June and July for Castanea. Yearly variations on these dates could be related to the influence of meteorological factors such as rainfall, temperature, or dominant winds. The highest values appeared in the year 2004 for both taxa. The Fagaceae airborne content was mainly due to Quercus pollen, Castanea having a scarce pollen content in the city of Salamanca. The highest counts of Fagaceae pollen grains were found from mid May to early June due to the pollen behavior of oaks. The cumulative counts varied over the years, with a mean value of 2,384 pollen grains, a highest total of 6,036 in 2004 and a lowest total of 954 in 2001. No cyclic variations were observed. Daily pollen concentrations presented positive correlation with temperature, negative with relative humidity and slightly negative with rainfall using Spearman's correlation coefficients, only in the case of Castanea, because the particular hourly distribution of rainfall during the spring might affect Quercus airborne pollen.  相似文献   

15.
 Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens. Received: 14 October 1996 / Revised: 17 February 1997 / Accepted: 28 February 1997  相似文献   

16.
A study of airborne fungal spore was carried out at nine locations in the southern part of the state of Enugu, Nigeria, from March 2005 to February 2006. The aim of the study was to ascertain the variations in selected fungal spore types at the sites owing to weather conditions. The variation in airborne fungal spores of 14 taxa was studied using modified Tauber pollen traps including Alternaria, Corynespora, Curvularia, Drechslera type, Endophragmiella, Botryodiplodia, Ganoderma, Gliomastrix, Nigrospora, Pithomyces, Spegazzinia, Sporidesmium, Tetraploa and Ustilago. The frequency of the spore types recorded showed considerable variation. The highest spore counts were recorded in July, June and October. The highest numbers of fungal spores were recorded during the rainy season (June–October) to early dry season (November–December). The peak of occurrence of most selected fungal spore types was July. The highest percentages of fungal spores were documented at the recording stations Mgbowo Junction, UNTH Ituku Ozalla and Oji River Express Junction. Spearman’s correlation analyses were performed for the monthly amounts of the fungal spore types and monthly meteorological factors. The numbers of Curvularia, Nigrospora and Sporidesmium was significantly correlated with relative humidity, while those of Endophragmiella, Pithomyces and Nigrospora were significantly correlated with temperature. A significant correlation was also found between the number of Nigrospora spores and light intensity and Sporidesmium spores and wind velocity. Relative humidity and temperature seem to be the most important weather conditions affecting the frequency of the selected spore types in the atmosphere.  相似文献   

17.
Electron microscopy was used to study the infection of sunflower leaves by Alternaria helianthi. Conidia germinated by producing one to many germ tubes which grew across the leaf surface before forming appressoria. The fungus directly penetrated its host through the cuticle and epidermis. Entry into the host through wounds and stomates was also observed. Extracellular sheaths were found to be associated with germ tubes and intercellular hyphae of A. helianthi. Conidiophores developed through collapsed stomates, from leaf veins, trichomes and also from mycelium growing across the host leaf surface. Microcylic conidia were produced directly from parent conidia under certain conditions. Studies using a volumetric spore trap showed that the airborne spore concentration followed a distinct periodicity with peaks occurring between 0900 and 1100 h each day. Laboratory studies showed that safflower, noogoora burr and bathurst burr could serve as alternative hosts for A. helianthi. The pathogen was readily isolated from sunflower crop debris from a diseased crop that had been harvested 1 yr earlier.  相似文献   

18.
The number of individuals allergic to plant pollen has recently been on a constant increase. The knowledge of diurnal distribution and abundance of allergenic pollen types, their patterns and response to source position and weather is useful to correlate hay fever symptoms with the presence of allergenic pollen in the atmosphere. The aim of this study was to determine diurnal distribution of total airborne pollen, pollen of particular allergenic taxa, possible variation in diurnal pollen distribution at measuring sites placed at different heights, and effect of some meteorological parameters on airborne pollen concentrations. A 7-day Hirst-type volumetric pollen trap was used for pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). Total pollen of all plant taxa (Ambrosia sp., Betula sp., Cupressaceae, Urticaceae, Poaceae, Quercus sp., Fraxinus sp., Alnus sp., Corylus sp., Populus sp., Pinus sp., Picea sp.) observed showed a regular diurnal distribution at both sampling sites in both study years, with a rise in the pollen concentration recorded after 4.00 a.m. and 6.00 a.m., respectively. The peak pollen concentration occurred between 12.00 a.m. and 4.00 p.m., and the lowest diurnal pollen concentrations were recorded overnight. About 50% of the 24-h pollen concentration were released to the atmosphere between 10.00 a.m. and 4.00 p.m. The timing and size of diurnal peaks were closely related to high temperature, low humidity and south-west maximum wind direction.  相似文献   

19.
The aim of this paper was to determine for first time the influence of the main meteorological parameters on the atmospheric fungal spore concentration in Havana (Cuba). This city is characterized by a subtropical climate with two different marked annual rainfall seasons during the year: a “dry season” and a “rainy season”. A nonviable volumetric methodology (Lanzoni VPPS-2000 sampler) was used to sample airborne spores. The total number of spores counted during the 2 years of study was 293,594, belonging to 30 different genera and five spore types. Relative humidity was the meteorological parameter most influencing the atmospheric concentration of the spores, mainly during the rainy season of the year. Winds coming from the SW direction also increased the spore concentration in the air. In terms of spore intradiurnal variation we found three different patterns: morning maximum values for Cladosporium, night peaks for Coprinus and Leptosphaeria, and uniform behavior throughout the whole day for Aspergillus/Penicillium."  相似文献   

20.
For years the medical profession has recognized a relationship between fungal airspora and the incitement of respiratory allergies. An evaluation of outdoor fungal airspora on an eastern Ohio campus during June 1988 revealed significant differences in quality and quantity with respect to microenvironments. Type of vegetation, diurnal periodicities, and daily weather conditions affected the airspora at each site. Shaded lawns within groves and windbreaks, unshaded lawns, and asphalt-covered parking lots presented varying dynamics for fungal spore liberation. Unshaded lawns produced airspora most abundantly during morning and least abundantly during afternoon. Arboreal sites produced airspora most prolifically at midday. A deciduous sycamore grove produced fewer afternoon airspora than evergreen pine and arborvitae stands. Evening airspora at all vegetated sites increased after experiencing afternoon troughs. Frequently encountered molds included Cladosporium spp., brightly pigmented sterile mycelia, and Alternaria spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号