首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Challenges to energy homeostasis, such as cold exposure, can have consequences for both metabolic and cardiovascular functioning. We hypothesized that 1-wk cold exposure (4 degrees C) would produce concurrent increases in metabolic rate (VO(2); indirect calorimetry), heart rate (HR), and mean arterial blood pressure (MAP) measured by telemetry. In the initial hours of change in ambient temperature (T(a)), both spontaneously hypertensive rats (SHRs) and normotensive Sprague-Dawley rats showed rapid increases (in cold) or decreases (in rewarming) of VO(2), HR, and MAP, although the initial changes in MAP and HR were more exaggerated in SHRs. Throughout cold exposure, HR, VO(2), food intake, and locomotor activity remained elevated but MAP decreased in both strains, particularly in the SHR. During rewarming, all measures normalized quickly in both strains except MAP, which fell below baseline (hypotension) for the first few days. The results indicate that variations of T(a) produce rapid changes in a suite of cardiovascular and behavioral responses that have many similarities in hypertensive and normotensive strains of rats. The findings are consistent with the general concept that the cardiovascular responses to cold exposure in rats are closely related to and perhaps a secondary consequence of the mechanisms responsible for increasing heat production.  相似文献   

2.
Hydrogen sulfide (H(2)S), an endogenous "gasotransmitter", exists in the central nervous system. However, the central cardiovascular effects of endogenous H(2)S are not fully determined. The present study was designed to investigate the central cardiovascular effects and its possible mechanism in anesthetized rats. Intracerebroventricular (icv) injection of NaHS (0.17~17 microg) produced a significant and dose-dependent decrease in blood pressure (BP) and heart rate (HR) (P < 0.05) compared to control. The higher dose of NaHS (17 microg, n = 6) decreased BP and HR quickly of rats and 2 of them died of respiratory paralyse. Icv injection of the cystathionine beta-synthetase (CBS) activator s-adenosyl-L-methionine (SAM, 26 microg) also produced a significant hypotension and bradycardia, which were similar to the results of icv injection of NaHS. Furthermore, the hypotension and bradycardia induced by icv NaHS were effectively attenuated by pretreatment with the K(ATP) channel blocker glibenclamide but not with the CBS inhibitor hydroxylamine. The present study suggests that icv injection of NaHS produces hypotension and bradycardia, which is dependent on the K(ATP) channel activation.  相似文献   

3.
The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.  相似文献   

4.
Acute studies suggest that adiponectin may reduce sympathetic activity and blood pressure (BP) via actions on the central nervous system (CNS). However, the chronic effects of adiponectin on energy expenditure and cardiovascular function are still poorly understood. We tested if chronic intracerebroventricular (ICV) infusion of adiponectin (1 or 7μg/day) in Sprague-Dawley rats fed a high fat diet (HFD) for 8 weeks and at the high dose (7μg/day) in spontaneously hypertensive rats (SHRs), a hypertensive model associated with sympathetic overactivity, evoked chronic reductions in BP and heart rate (HR). We also determined if chronic ICV adiponectin infusion alters appetite, whole body oxygen consumption (VO(2)), and insulin and leptin levels. Neither dose of adiponectin infused for 7 days significantly altered BP or HR in the HFD group (115±2 to 112±2mmHg and 384±6 to 379±6bpm at 1μg/day; 109±3 to 111±3mmHg and 366±5 and 367±5bpm at 7μg/day). The higher dose slightly reduced food intake (14±1 to 11±1g/day), whereas VO(2), insulin and leptin levels were not affected by the treatment. In SHRs, ICV adiponectin infusion reduced appetite (22±2 to 12±2g/day) and insulin levels (~55%), but did not alter BP (162±4 to 164±3mmHg) or HR (312±5 to 322±8bpm). These results suggest that adiponectin, acting via its direct actions on the CNS, has a small effect to reduce appetite and insulin levels, but it has no long-term action to reduce BP or HR, or to alter whole body metabolic rate.  相似文献   

5.
We utilized variations in caloric availability and ambient temperature (T(a)) to examine interrelationships between energy expenditure and cardiovascular function in mice. Male C57BL/6J mice (n = 6) were implanted with telemetry devices and housed in metabolic chambers for measurement of mean arterial pressure (MAP), heart rate (HR), O(2) consumption (VO(2)), and locomotor activity. Fasting (T(a) = 23 degrees C), initiated at the onset of the dark phase, resulted in large and transient depressions in MAP, HR, VO(2), and locomotor activity that occurred during hours 6-17, which suggests torporlike episodes. Food restriction (14 days, 60% of baseline intake) at T(a) = 23 degrees C resulted in progressive reductions in MAP and HR across days that were coupled with an increasing occurrence of episodic torporlike reductions in HR (<300 beats/min) and VO(2) (<1.0 ml/min). Exposure to thermoneutrality (T(a) = 30 degrees C, n = 6) reduced baseline light-period MAP (-14 +/- 2 mmHg) and HR (-184 +/- 12 beats/min). Caloric restriction at thermoneutrality produced further reductions in MAP and HR, but indications of torporlike episodes were absent. The results reveal that mice exhibit robust cardiovascular responses to both acute and chronic negative energy balance. Furthermore, we conclude that T(a) is a very important consideration when assessing cardiovascular function in mice.  相似文献   

6.
Hill C  Dunbar JC 《Peptides》2002,23(9):1625-1630
Alpha melanocyte stimulating hormone (alphaMSH) has been demonstrated to have regulatory functions in the periphery and central nervous system (CNS). alphaMSH plays a central role in the regulation of metabolic balance such as decreasing food intake, increasing sympathetic outflow and hypothalamic/pituitary function. Our laboratory has investigated the actions of alphaMSH on sympathetic and cardiovascular dynamics using anesthetized animals. In this study we determined both the acute and chronic effects of alphaMSH on cardiovascular and metabolic dynamics in conscious unrestrained rats. Animals were each implanted with a radio-telemetry transmitter for recording of cardiovascular parameters and subsequently instrumented with intracerebroventricular (ICV) cannulas. The acute ICV administration of alphaMSH significantly increased the mean arterial pressure (MAP) and heart rate (HR) when compared to artificial cerebrospinal fluid (ACSF) controls. On the other hand chronic alphaMSH infusion resulted in an initial increase in MAP and HR lasting for 2 days followed by a decrease in MAP. Chronic alphaMSH administration decreased physical activity and food intake but not weight gain. We conclude that in the conscious unrestrained animal the acute administration of alphaMSH increased MAP and HR, however, chronic infusion is associated with decreased MAP, physical activity and food intake.  相似文献   

7.
The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.  相似文献   

8.
Porter JP  Phillips A  Rich J  Wright D 《Life sciences》2004,75(13):1595-1607
There is increasing evidence that early life stressors may program blood pressure control mechanisms such that the risk for cardiovascular disease in later life is increased. In the present investigation, the effect of repeated restraint/heat stress during the two-week period immediately after weaning on baroreflex function was determined and the contribution of brain angiotensin II (ANG II) to the changes was assessed in young, conscious, freely moving Sprague Dawley rats. In rats two weeks post weaning, basal MAP was significantly higher and basal HR significantly lower than rats tested immediately after weaning. This change in the operating point of HR was not accompanied by any changes in baroreflex function. Treatment with chronic icv infusion of losartan, an AT1 receptor antagonist, during the two-week period prevented the changes in basal MAP and HR. Chronic stress during the two weeks post weaning, whether due to surgical implantation of icv cannulae or due to restraint/heat stress, significantly shifted the set-point of the baroreflex function to a higher pressure. Chronic icv infusion of losartan during the period prevented these effects (at least in the case of stress due to the presence of icv cannulae) suggesting a role for brain ANG II in the change. Changes in the expression of CRH mRNA in the paraventricular nucleus could not explain the stress-related change in baroreflex function. If the rightward shift in the baroreflex persists into adulthood, it could increase the susceptibility to cardiovascular diseases such as hypertension.  相似文献   

9.
Does leptin play a vital role in initiating puberty in female rats and can it overrule a nutrionally imposed (i.e. a 30% feed restriction, FR) delay in puberty onset? Prepubertal female rats were chronically infused for 14 days with leptin (icv or sc) or leptin-antiserum (icv) while puberty onset was monitored by means of scoring the moment of vaginal opening (VO). Median VO age was higher (35 days versus 27 days) in FR animals but leptin levels at VO were significantly decreased (1.44 +/- 0.17 ng/ml versus 2.79 +/- 0.31 ng/ml). Centrally (icv) and peripherally (sc) infused leptin (1 microg/day) advanced VO age compared to FR controls (30 days versus 35 days and 31 days versus 41 days, respectively). Congruently, centrally (icv) administered leptin-antiserum (0.6 microg/day) delayed puberty onset. In normally fed rats median VO age was only marginally advanced (26 days versus 27 days) but only if leptin was applied centrally. The effects of FR on puberty onset are counteracted or even normalized by the infusion of leptin, whereas immunoneutralization of central leptin postpones puberty onset. We therefore conclude that central leptin is crucial for initiating puberty in female rats.  相似文献   

10.
We tested the hypothesis that intracerebroventricular (lateral ventricle) administration of interleukin-1beta (IL-1beta) antibody increases the level of sympathetic nerve discharge (SND) in alpha-chloralose-anesthetized rats. Mean arterial pressure (MAP), heart rate (HR), and SND (splenic and renal) were recorded before (Preinfusion), during (25 min), and for 45 min after infusion of IL-1beta antibody (15 microg, 50 microl icv) in baroreceptor-intact (intact) and sinoaortic-denervated (SAD) rats. The following observations were made. First, intracerebroventricular infusion of IL-1beta antibody (but not saline and IgG) significantly increased MAP and the pressor response was higher in SAD compared with intact rats. Second, renal and splenic SND were significantly increased during and after intracerebroventricular IL-1beta antibody infusion and sympathoexcitatory responses were higher in SAD compared with intact rats. Third, intracerebroventricular administration of a single dose of IL-1beta antibody (15 microg, 5 microl for 2 min) significantly increased splenic and renal SND in intact rats. These results suggest that under the conditions of the present experiments central neural IL-1beta plays a role in the tonic regulation of SND and arterial blood pressure.  相似文献   

11.
Obese Zucker rats (fa/fa) are characterized by inadequate leptin signaling caused by a mutation in the leptin receptor gene. Obese Zucker females are infertile and hyporesponsive to the inductive effects of ovarian hormones on sexual behaviors. Leptin treatment reverses aspects of reproductive dysfunction due to perturbations in energy balance in other animal models. Our first experiment tested the hypothesis that intracerebroventricular (icv) leptin administration would enhance the display of sexual behaviors in obese Zucker females. A second experiment compared lean and obese Zucker females' responses to leptin, during fed and fasted conditions. Ovariectomized (OVX) Zucker rats were implanted with lateral ventricular cannulae. In Experiment 1, fasted, obese females received estradiol benzoate, progesterone, and icv injections of 3, 18, or 36 microg murine leptin or vehicle. Leptin administration reduced food intake, but did not enhance sexual behaviors. In Experiment 2, steroid-replaced, OVX lean and obese females (from a different source than those in Experiment 1) received icv injections of vehicle or 3 or 36 microg leptin under fed and fasted conditions. Leptin treatment reduced food intake and weight gain in the fed, but not the fasted, condition in both genotypes. Sexual receptivity and locomotion were not affected, but icv leptin injections reduced proceptive behaviors in ad libitum-fed rats. These data confirm previous reports that centrally administered leptin decreases food intake and weight gain in obese Zucker rats; results from Experiment 2 suggest that lean and obese females are similarly responsive to these actions of leptin. Contrary to our hypothesis, leptin treatment did not stimulate sexual behaviors; rather, the hormone appears to inhibit the display of sexual proceptivity in ad libitum-fed lean and obese Zucker female rats.  相似文献   

12.
Melanin-concentrating hormone (MCH) and neuropeptide Y (NPY) are orexigenic peptides found in hypothalamic neurons that project throughout the forebrain and hindbrain. The effects of fourth ventricle (4V) infusions of NPY (5 microg) and MCH (5 microg) on licking for water, 4 mM saccharin, and sucrose (0.1 and 1.0 M) solutions were compared to identify the contributions of each peptide to hindbrain-stimulated feeding. NPY increased mean meal size only for the sucrose solutions, suggesting that caloric feedback or taste quality is pertinent to the orexigenic effect; MCH infusions under identical testing conditions failed to produce increases for any tastant. A second experiment also observed no intake or licking effects after MCH doses up to 15 microg, supporting the conclusion that MCH-induced orexigenic responses require forebrain stimulation. A third experiment compared the 4V NPY results with those obtained after NPY infusions (5 microg) into the third ventricle (3V). In contrast to the effects observed after the 3V NPY injections and previously reported forebrain intracerebroventricular (ICV) NPY infusion studies, 4V NPY failed to increase meal frequency for any taste solution or ingestion rate in the early phases of the sucrose meals. Overall, 4V NPY responses were limited to intrameal behavioral processes, whereas forebrain ICV NPY stimulation elicited both consummatory and appetitive responses. The dissociation between MCH and NPY effects observed for 4V injections is consistent with reports that forebrain ICV injections of MCH and NPY produced nearly dichotomous effects on the pattern of licking microstructure, and, collectively, the results indicate that the two peptides have separate sites of feeding action in the brain.  相似文献   

13.
We had previously demonstrated that indomethacin affected the corticosterone secretion induced by central stimulation of alpha-but not beta-adrenergic receptors in conscious rats. In the present study we investigated whether hypothalamic and/or pituitary prostaglandins (PGs) were involved in the central adrenergic stimulation of ACTH secretion. Indomethacin, 2 mg/kg ip or 10 microg intracerebroventricularly (icv), was administered 15 min before phenylephrine (30 microg icv), an alpha-adrenergic agonist, clonidine (10 microg), an alpha2-adrenergic agonist, and isoprenaline (20 microg) or clenbuterol (10 microg), a beta1- or beta2-adrenergic agonist. One hour after the last injection the rats were decapitated and plasma levels of ACTH were measured. The present results show that the ACTH responses induced by icv administration of phenylephrine and clonidine were considerably impaired by icv or ip pretreatment with indomethacin, an inhibitor of prostaglandin synthesis. Indomethacin given by either route only slightly diminished the isoprenaline-induced ACTH response and did not substantially alter the clenbuterol-induced response. The adrenergic-induced ACTH responses were more potently inhibited by ip than by icv pretreatment with indomethacin, which may result from a stronger inhibition of PGs synthesis in the median eminence and anterior pituitary by ip pretreatment with indomethacin than in hypothalamic structures by its icv administration. These results indicate a significant involvement of PGs in central stimulation of the hypothalamic-pituitary adrenal (HPA) axis by alpha1- and alpha2- but not beta-adrenergic receptors.  相似文献   

14.
Intracerebroventricular (icv) injection of choline (50–150 μg) causes a transient increase in blood pressure and a more prolonged decrease in heart rate (HR) in conscious rats. The bradycardia results from a centrally mediated increase in vagal tone. The cardiovascular effects do not appear to involve endogenous brain acetylcholine since there is no significant difference in the responses induced by choline before and after icv injection of hemicholinium-3. Intracerebroventricular ventricular injection of atropine or mecamylamine, alone, failed to influence the choline effect. However, atropine and mecamylamine, given together, abolished the reduction of HR, but still failed to modify the pressor response. The changes in blood pressure and HR appear to be due to effects of choline on post-synaptic receptors in different brain regions.  相似文献   

15.
Bradykinin (BK) is a peptide known to activate afferent nerve fibers from the kidney and elicit reflex changes in the cardiovascular system. The present study was specifically designed to test the hypothesis that bradykinin B2 receptors mediated the pressor responses elicited during intrarenal bradykinin administration. Pulsed Doppler flow probes were positioned around the left renal artery to measure renal blood flow (RBF). A catheter, to permit selective intrarenal administration of BK, was advanced into the proximal left renal artery. The femoral artery was cannulated to measure mean arterial pressure (MAP). MAP, heart rate (HR), and RBF were recorded from conscious unrestrained rats while five-point cumulative dose-response curves during an intrarenal infusion of BK (5-80 microg x kg(-1) x min(-1)) were constructed. Intrarenal infusion of BK elicited dose-dependent increases in MAP (maximum pressor response, 26+/-3 mmHg), accompanied by a significant tachycardia (130+/-18 beats/min) and a 28% increase in RBF. Ganglionic blockade abolished the BK-induced increases in MAP (maximum response, -6+/-5 mmHg), HR (maximum response 31+/-14 beats/min), and RBF (maximum response, 7+/-2%). Selective intrarenal B2-receptor blockade with HOE-140 (50 microg/kg intrarenal bolus) abolished the increases in MAP and HR observed during intrarenal infusion of BK (maximum MAP response, -2+/-3 mmHg; maximum HR response, 15+/-11 beats/min). Similarly, the increases in RBF were prevented after HOE-140 treatment. In fact, after HOE-140, intrarenal BK produced a significant decrease in RBF (22%) at the highest dose of BK. Results from this study show that the cardiovascular responses elicited by intrarenal BK are mediated predominantly via a B2-receptor mechanism.  相似文献   

16.
Maximal and submaximal metabolic and cardiovascular measures and work capacity were studied in control (n = 7) and experimental (n = 9) subjects (S's) during arm work prior to and following 10 wk of interval arm training. These measures were oxygen uptake (VO2), minute ventilation (VE), heart rate (HR), respiratory exchange ratio (R), cardiac output (Q), stroke volume (SV), and arteriovenous oxygen difference ((a--v)O2 diff). In addition, maximal oxygen uptake (VO2max) was measured in both groups during treadmill running. Experimental S's showed significant increases (P less than 0.01) in peak VO2 (438 ml.min-1), max VE (17.7 l.min-1), max (a--v)O2 diff (20.8 ml.l-1), and work time (9.2 min) during arm ergometry, while maximum values of Q, SV, HR, and R remained unchanged. In addition, submaximal heart rates were significantly lower during arm ergometry after training. VO2max during treadmill running remained essentially unchanged. No changes in metabolic and physiological measures were noted for the controls after the 10-wk training period. The results support the concept of training specificity for VO2max, and indicate that the improvement in peak VO2 in arm ergometry reflects enhanced oxygen utilization due to an expanded (a--v)O2 diff.  相似文献   

17.
In rats with congestive heart failure (CHF) post myocardial infarction (MI) acute blockade of brain "ouabain" reverses sympathetic hyperactivity and chronic blockade prevents the desensitization of baroreflex function. This study was conducted to determine: i) if chronic blockade of brain "ouabain" maintains normal sympathetic reactivity; and ii) if acute baroreflex resetting (another parameter of baroreflex function) also becomes impaired, and if so, does brain "ouabain" contribute to impairment in acute baroreflex resetting. CHF post MI was induced by acute coronary artery ligation in Wistar rats. Animals were treated with 200 microg x day(-1) i.c.v. or i.v. Fab fragments (which bind brain "ouabain" with high affinity), or treated with 200 microg x day(-1) i.c.v. gamma-globulins (control group). The length of treatment was 0.5-8 weeks or 4-8 weeks post MI. At 8 weeks mean arterial pressure (MAP), central venous pressure (CVP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in concious rats at rest and in response to: i) air-jet stress, ii) i.c.v. guanabenz (an alpha2-adrenoceptor agonist), and iii) a 30 min i.v. infusion of nitroprusside (NP). Excitatory responses to air stress and inhibitory responses to guanabenz of MAP, HR, and RSNA were significantly enhanced in rats with CHF versus the sham-operated treated group. This enhancement was prevented in the CHF group treated with i.c.v., but not i.v., Fab. Nitroprusside induced a sustained decrease in MAP (approximately 25 mmHg) and a transient decrease in CVP. Heart rate and RSNA increased significantly within 1 min of beginning the infusion. The peak increases as well as the product of changes in MAP-HR and RSNA-HR were significantly smaller in rats with CHF treated with gamma-globulins versus sham rats and versus CHF rats treated with i.c.v. Fab. In sham-operated rats and CHF rats treated with i.c.v. Fab, RSNA and HR began to decrease within 3-4 min of beginning the NP infusion and had returned to baseline by 20 min. In contrast, RSNA and HR remained increased throughout the infusion in the CHF rats treated with gamma-globulins. These data indicate that in rats with CHF acute resetting of the arterial baroreflex in response to a lower BP becomes impaired, and chronic blockade of brain "ouabain" prevents both this change in baroreflex resetting as well as sympathetic hyperactivity.  相似文献   

18.
The purpose of this study is to examine the cardiovascular and metabolic responses between dynamic and static exercise when a leg press exercise is performed. Seven participants (20-21 yrs) were recruited for the experiment. Four modes of dynamic or static leg press exercise were assigned in two combined conditions: a unilateral or a bilateral condition and two exercise intensities with 20% and 40% of maximal voluntary contraction (20% MVC, 40% MVC). The duration of the dynamic exercise and the static exercise at 20% MVC was six minutes, and the static exercise at 40% MVC was three minutes. In the dynamic exercise, ventilation (VE), O2 uptake (VO2), heart rate (HR), and systolic and diastolic blood pressures (SBP, DBP) reached the steady-state after 3 min exercise, while in the static leg press, these responses continued to increase at the end of exercise. The alteration in VO2 mostly depended on both exercise intensity and the one- or two-leg condition during the dynamic leg press, whereas no significant difference in VO2 during the static leg press was found in the four modes. The alterations in rate-pressure product (RPP) depended solely on exercise intensity and leg condition. These findings suggest that the static leg press causes a greater rise in HR, SBP, and DBP. In addition, RPP appears particularly sensitive to experimental modes.  相似文献   

19.
The study was designed to determine the cardiovascular effects of histamine administered intracerebroventricularly (icv) in a rat model of volume-controlled haemorrhagic shock. The withdrawal of approximately 50% of total blood volume resulted in the death of all control saline icv treated animals within 30 min. Icv injection of histamine produced a prompt dose-dependent (0.1-100 nmol) and long-lasting (10-100 nmol) increase in mean arterial pressure (MAP), pulse pressure (PP) and heart rate (HR), with a 100% survival of 2h after treatment (100 nmol). The increase in MAP and HR after histamine administration in bled rats in comparison to the normovolaemic animals was 2.7-3.3- and 1.3-3.6-fold higher, respectively. Pretreatment with chlorpheniramine (50 nmol icv), H1 receptor antagonist, inhibited the increase in MAP, PP, HR and survival rate produced by histamine, while chlorpheniramine given alone had no effect. Neither ranitidine (50 nmol icv), H2 histamine receptor antagonist, nor thioperamide (50 nmol icv), H3 receptor blocker, influenced the histamine action, however, when given alone, both evoked the pressor effect with elongation of survival time. It can be concluded that histamine administered icv reverses the haemorrhagic shock conditions, and histamine H1 receptors are involved.  相似文献   

20.
The in vivo cardiovascular effects of acutely administered neurokinin B (NKB) have been attributed both to direct effects on vascular tone and to indirect effects on central neuroendocrine control of the circulation. We proposed: 1) that a modest long-term increase in plasma NKB levels would decrease mean arterial pressure (MAP) due to attenuated peripheral vascular tone, and 2) that chronic high-dose NKB would increase MAP, due to increased sympathetic outflow which would override the peripheral vasodilation. We examined the in vivo and in vitro cardiovascular effects of chronic peripheral NKB. Low- (1.8 nmol/h) or high- (20 nmol/h) dose NKB was infused into conscious female rats bearing telemetric pressure transducers. MAP, heart rate (HR) and the pressor responses to I.V. phenylephrine (PE, 8 microg) and angiotensin II (Ang II, 150 ng) were measured. Concentration-response curves of small mesenteric arteries were constructed to PE using wire myography. Low-dose NKB reduced basal MAP (88+/-2 mm Hg to 83+/-2 mm Hg), did not affect resting HR, reduced the pressor responses to PE, and attenuated the maximal constriction of mesenteric arteries to PE and KCl. By contrast, high-dose NKB increased basal MAP (86+/-1 mm Hg to 89+/-1 mm Hg), increased HR (350+/-3 beats/min to 371+/-3 beats/min), increased the pressor responses to Ang II and, contrary to our hypothesis, increased the maximum contractile responses of mesenteric arteries to PE and KCl. The cardiovascular effects of NKB are thus dose-dependent: whereas chronic low-dose NKB directly modulates vascular tone to reduce blood pressure, chronic high-dose NKB induces an increase in blood pressure through both central (indirect) and peripheral (direct) pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号