首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract Beet molasses (BM) has proven to be an excellent feedstock for polyhydroxyalkanoate (PHA) production by Azotobacter vinelandii UWD. The substrate-cost for PHA production from BM in fed-batch culture was one-third of that using glucose. Copolymers containing β-hydroxyvalerate are readily formed in BM medium when valerate is used as a precursor. The origin of the hydroxyvalerate monomer was most likely a β-ketoacyl-CoA intermediate in the β-oxidation of the odd-length n -alkanoates. BM also contained unidentified factors that stimulated PHA production to a greater extent than cell growth. Analysis of BM fractions has suggested that amino-N compounds may be required for PHA-yield-promotion. Thus the addition of a small amount of commercial peptone to mineral salts medium containing pure or other impure sugar sources has led to significantly increased PHA yields.  相似文献   

2.
Pretreatment of beet molasses to increase pullulan production   总被引:2,自引:0,他引:2  
Pretreatment of beet molasses with cation exchange resin, sulphuric acid, tricalcium phosphate, potassium ferrocyanide, and ethylenediaminetetraacetic acid and disodium salt (EDTA) to increase the production of pullulan was investigated. Among the above techniques used for the removal of heavy metals, sulphuric acid treatment gave better results regarding polysaccharide concentration, polysaccharide yield, and sugar utilization. Aureobasidium pullulans grown on beet molasses produced a mixture of pullulan and other polysaccharides. The pullulan content of the crude polysaccharide was 30–35%. The addition of nutrients improved the production of polysaccharide. A maximum polysaccharide concentration (32·0±1·0 g litre−1) was achieved in molasses solution (70 g litre 1 initial sugar concentration, pH 6·5–7·5) treated with sulphuric acid and supplemented with K2HPO4 0·5%, -glutamic acid 1%, olive oil 2·5% and Tween 80 0·5%. In this case, the highest values of biomass dry weight (33·8±1·0 g litre−1), polysaccharide yield (63·5±2·5%), and sugar utilization (97·5±1·5%) were obtained at pH 6·5, 3·5, and 4·5–7·5, respectively.  相似文献   

3.
Summary Production of lysine and methionine byAzotobacter chroococcum strain H23 andA. vinelandii strain ATCC 12837 was studied in chemically-defined medium and dialysed-soil medium, amended with different concentrations of Simazine. Responses on production due to Simazine were different for each strain and were fairly conditioned by culture media composition. Quantitative production of amino acids was significantly affected by the xenobiotic only at higher doses (50–100,g/ml). The effect of Simazine on methionine production by strain H23 was very pronounced when bacteria were grown in dialysed-soil medium, which was specially formulated to reproduce the natural habitat of the organisms.  相似文献   

4.
5.
Production of lactic acid from beet molasses by Lactobacillus delbrueckii NCIMB 8130 in static and shake flask fermentation was investigated. Shake flasks proved to be a better fermentation system for this purpose. Substitution of yeast extract with other low cost protein sources did not improve lactic acid production. The maximum lactic acid concentration was achieved without treatment of molasses. A Central Composite Design was employed to determine the maximum lactic acid concentration at optimum values for the process variables (sucrose, yeast extract, CaCO3). A satisfactory fit of the model was realized. Lactic acid production was significantly affected both by sucrose–yeast extract and sucrose–CaCO3 interactions, as well as by the negative quadratic effects of these variables. Sucrose and yeast extract had a linear effect on lactic acid production while the CaCO3 had no significant linear effect. The maximum lactic acid concentration (88.0 g/l) was obtained at concentrations for sucrose, yeast extract and CaCO3 of 89.93, 45.71 and 59.95 g/l, respectively.  相似文献   

6.
Summary The potential of four sugar beet substrates from the sugar industry [syrup (S), crystallizer effluent 1 (CE1), crystallizer effluent 2 (CE2) and molasses (M)] were compared for ethanol production using an osmotolerant mutant strain of the bacterium Zymomonas mobilis. Sucrose of the substrates was enzymatically hydrolysed to avoid levan formation during fermentation. Nutrient supplementation experiments have shown that reproducible growth and ethanol production could be obtained on the four substrates supplemented only with magnesium sulphate (CE2 and M) or additionally with ammonium sulphate (S and CE1). Thus, addition of costly yeast extract could be avoided. All 20% (w/v) substrates showed nearly complete sugar conversion (>94.9%), good growth (0.16 h–1) and ethanol production (>40 g 1–1). However, sorbitol formation reduced the ethanol yield (73–79% of the theoretical value) significantly. Batch kinetic parameters and studies of instantaneous parameters showed that enhanced osmolality of substrates (SZ. mobilis with appropriate supplementation. Offprint requests to: J. Baratti  相似文献   

7.
A laboratory process was established for ethanol production by fermentation of sugar beet molasses with the bacterium Zymomonas mobilis. Sucrose in the molasses was hydrolyzed enzymatically to prevent levan formation. A continuous system was adopted to reduce sorbitol formation and a two-stage fermentor was used to enhance sugar conversion and the final ethanol concentration. This two-stage fermentor operated stably for as long as 18 d. An ethanol concentration of 59.9 g/l was obtained at 97% sugar conversion and at high ethanol yield (0.48 g/g, 94% of theoretical). The volumetric ethanol productivity (3.0 g/l·h) was superior to that of batch fermentation but inferior to that of a single-stage continuous system with the same medium. However, the thanol concentration was increased to a level acceptable for economical recovery. The process proposed in this paper is the first report of successful fermentation of sugar beet molasses in the continuous mode using the bacterium Z. mobilis.  相似文献   

8.
Summary The growth responses ofNeurospora crassa strain No. 37401 to biotin were determined by weighing dried mycelia. It was possible to use a simple synthetic basal medium. Controls with no biotin only gave inconsiderable growths, and the variations within all series were minute. The incubation time was 5 to 6 days. The sensitivity of the assay is indicated by the fact that an increment of 0.05 m/20 ml (1 part per 4 × 1011) could be measured with accuracy. Molasses had no effect on the growth other than that due to its biotin content.The assay method can be used for biotin quantities within a range of 0.1 – 1.4 m per 20 ml. Determinations at various levels within this range showed an average deviation of biotin content per mg of about 2 per cent.  相似文献   

9.
A three-stage process was developed to produce polyhydroxyalkanoates (PHAs) from sugar cane molasses. The process includes (1) molasses acidogenic fermentation, (2) selection of PHA-accumulating cultures, (3) PHA batch accumulation using the enriched sludge and fermented molasses. In the fermentation step, the effect of pH (5–7) on the organic acids profile and productivity was evaluated. At higher pH, acetic and propionic acids were the main products, while lower pH favoured the production of butyric and valeric acids. PHA accumulation using fermented molasses was evaluated with two cultures selected either with acetate or fermented molasses. The effect of organic acids distribution on polymer composition and yield was evaluated with the acetate selected culture. Storage yields varied from 0.37 to 0.50 Cmmol HA/Cmmol VFA. A direct relationship between the type of organic acids used and the polymers composition was observed. Low ammonia concentration (0.1 Nmmol/l) in the fermented molasses stimulated PHA storage (0.62 Cmmol HA/Cmmol VFA). In addition, strategies of reactor operation to select a PHA-accumulating culture on fermented molasses were developed. The combination of low organic loading with high ammonia concentration selected a culture with a stable storage capacity and with a storage yield (0.59 Cmmol HA/Cmmol VFA) similar to that of the acetate-selected culture.  相似文献   

10.
Summary The effect of pH on the production of citric and gluconic acid, from beet molasses byAspergillus niger, was studied using continuous culture. At pH values above 2.5 gluconic acid was the major product, citric acid being the predominant product at low pH values. The optimum specific activities of citrate synthase, aconitase, NAD-linked isocitrate dehydrogenase, and NADP-linked isocitrate dehydrogenase occurred at pH 4 and of glucose oxidase at pH 5.  相似文献   

11.
Optimization studies have been carried out for the production of L-lactic acid from the fermentation of beet molasses by Lactobacillus delbrueckii. A PLACKETT -BURMAN Design and a Central Composite Design have been used to determine the most suitable nutrient medium for obtaining a maximum cell concentration. A second-order polynomial empirical model relating both the cell and nutrient concentrations was formulated. The variables selected for the study were Yeast Extract, Peptone, Tween 80 (antifoam), MgSO4 · 7H2O, MnSO4·4H2O, FeSO4 · 7H2O and K2HPO4/KH2PO4. Among them, only Yeast Extract and Peptone were found to significantly affect the cell concentration. A maximum cell yield was found when the concentrations of Yeast Extract and Peptone were, respectively, 5.31 g/l and 5.08 g/l. All conclusions are restricted to the experimental range studied.  相似文献   

12.
13.
Lotfy WA 《Bioresource technology》2007,98(18):3491-3498
In this work, cephalosporin C (CPC) production on pilot scale fermenters of 600l capacity with 350l working volume by Acremonium chrysogenum EMCC 904 was performed. The effects of fermentation medium composition, inoculum concentration, initial pH and aeration rate on CPC production by A. chrysogenum strain was investigated by using response surface methodology (RSM). The Plackett-Burman design which involves two concentrations of each nutrient was effective in searching for the major medium components promoting CPC production. Under our experimental conditions; Soya oil, beet molasses and corn steep liquor were found to be the major factors contributing to the antibiotic production. Subsequently, a Box-Behnken design was used for outlining the concentration of the most effective medium constituents. Estimated optimum composition for the production of CPC was as follows: soya oil, 40g/l; beet molasses, 180g/l; and corn steep liquor, 330g/l. The central composite design was used for outlining the optimum values of the fermentation parameters. Estimated optimum values for the production of CPC are as follows: inoculum level, 10(5.5)spores/ml; initial pH, 4.3; and aeration rate, 9364ml/min.  相似文献   

14.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

15.
The antimicrobial activities of five commercial disinfectants containing quaternary ammonium compound-isopropanol (D1), sodium methyl dithiocarbamate (D2), sodium thiocarbamate (D3), sodium dimethyl dithiocarbamate (D4) and formaldehyde (D5) were studied against three main saccharolytic indigenous isolates (Bacillus cereus, Lactobacillus plantarum and Leuconostoc mesenteroides) from a beet sugar extraction line. Preliminary studies suggested that although all the disinfectants were effective against those isolates, the high economic cost in combination with large amounts of the disinfectants D2, D3 and D4 weaken their possibility for industrial use. Therefore, the minimum inhibitory concentration (MIC) of the other two examined disinfectants D1 and D5 was determined and survivor curves were obtained, for a period of 7 days. Bacterial counts against time (h) suggested that D1 was more effective than D5 against the microbial population. In particular, D1 was bacteriolytic above 7 mg/l for B. cereus and bactericidal above 80 mg/l for Lc. mesenteroides and above 100 mg/l for L. plantarum. The disinfectant D5 was bacteriolytic above 25 mg/l for B. cereus and bactericidal above 500 mg/l for Lc. mesenteroides and L. plantarum. Taking into consideration both features, i.e. high concentration and very low cost, the use of D5 (formaldehyde) appeared more suitable to the concerned beet sugar processor. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The effect of fed-batch operation (FBO) strategy was investigated using pretreated-beet molasses, containing galactose that induces the lac promoter, on benzaldehyde lyase (BAL) production by recombinant Escherichia coli BL21(DE3)pLySs. After batch cultivation with 30 g l?1 pretreated-beet molasses consisting of 7.5 g l?1 glucose and 7.5 g l?1 fructose, three FBO strategies were applied at dissolved oxygen (=40%) cascade to air-flow rate. In FBO1 when air-flow rate decreased considerably, feed was given to the system in pulses in such a way that pretreated-beet molasses concentration increased by 10 kg m?3 (containing 2.5 g l?1 glucose+2.5 g l?1 fructose); however, decrease in air-flow rate demonstrated only the absence of glucose but not fructose. Thus, in FBO2 when fructose and glucose were completely utilized, pretreated-beet molasses was pulse-fed and its concentration increased by 10 g l?1. In FBO3 with the decreased amount of pretreated-beet molasses (6 g l?1), shift response time from glucose to fructose consumption was avoided, and glucose and fructose consumptions were well correlated with air-flow rate, and the highest C X (8.04 g l?1) and BAL (2,315 U ml?1) production were obtained (t?=?24 h) with the highest substrate yield on cell and product formation.  相似文献   

17.
18.
The trial was conducted on 176 Hubbard male broilers, allotted into four groups of 44 animals each. The control group received a CBMS-free diet and the other groups were given feed containing 2.5, 5.0 and 7.5% CBMS, respectively. The trial started at 21 days of age and ended at 56 days of age. Growth rate was not affected by 2.5% CBMS but at higher levels, growth rate decreased. Feed intake was slightly lower in the animals given CBMS. Feed efficiency was practically the same for the control group and for the 2.5%-CBMS group but tended to worsen as the CBMS level increased.As far as dressing out percentages, health (checked by means of anatomo-pathological examination at slaughter), feathering pattern and meat organoleptic characteristics were concerned, no differences could be detected. Water content and ash content of the carcasses tended to increase, whereas ether extract decreased as CBMS level increased. Fatty acid composition of abdominal fat pad was uniform for the four groups; in the case of myristic, oleic and linoleic acids significant differences were recorded, but these differences must be considered as biologically not relevant. Excreta water content increased as CBMS level increased.  相似文献   

19.
Spray-dried soy molasses (SDSM) contains the sugars dextrose, sucrose, fructose, pinitol, raffinose, verbascose, melibiose, and stachyose. Of the 746 g kg−1 total sugars in SDSM, 434 g kg−1 is fermentable using Clostridium beijerinckii BA101. SDSM was used to produce acetone, butanol, and ethanol (ABE) by C. beijerinckii BA101 in batch cultures. Using 80 g l−1 SDSM, 10.7 g l−1 ABE was produced in P2 medium. Higher concentrations of SDSM resulted in poor solvent production due to the presence of excessive salt and inhibitory components. C. beijerinckii BA101 in SDSM at 80 g l−1 concentration produced 22.8 g l−1 ABE when supplemented with 25.3 g l−1 glucose. SDSM contains 57.4 g kg−1 mineral ash and 2% tri-calcium phosphate. Tri-calcium phosphate up to 43.1 g l−1 was not inhibitory and at a tri-calcium phosphate concentration of 28.8 g l−1, the culture produced more solvents (30.1 g l−1) than the control experiment (23.8 g l−1). In contrast, sodium chloride was a strong inhibitor of C. beijerinckii BA101 cell growth. At a concentration of 10 g l−1 sodium chloride, a maximum cell concentration of 0.6 g l−1 was achieved compared to 1.7 g l−1 in the control experiment. The effects of two salts on specific growth rate constant (μ) and specific rate of ABE production (ν) for C. beijerinckii BA101 were examined. Journal of Industrial Microbiology & Biotechnology (2001) 26, 290–295. Received 20 September 2000/ Accepted in revised form 16 February 2001  相似文献   

20.
Due to the environmental concerns and the increasing price of oil, bioethanol was already produced in large amount in Brazil and China from sugarcane juice and molasses. In order to make this process competitive, we have investigated the suitability of immobilized Saccharomyces cerevisiae strain AS2.1190 on sugarcane pieces for production of ethanol. Electron microscopy clearly showed that cell immobilization resulted in firm adsorption of the yeast cells within subsurface cavities, capillary flow through the vessels of the vascular bundle structure, and attachment of the yeast to the surface of the sugarcane pieces. Repeated batch fermentations using sugarcane supported-biocatalyst were successfully carried out for at least ten times without any significant loss in ethanol production from sugarcane juice and molasses. The number of cells attached to the support increased during the fermentation process, and fewer yeast cells leaked into fermentation broth. Ethanol concentrations (about 89.73–77.13 g/l in average value), and ethanol productivities (about 59.53–62.79 g/l d in average value) were high and stable, and residual sugar concentrations were low in all fermentations (0.34–3.60 g/l) with conversions ranging from 97.67–99.80%, showing efficiency (90.11–94.28%) and operational stability of the biocatalyst for ethanol fermentation. The results of this study concerning the use of sugarcane as yeast supports could be promising for industrial fermentations. L. Liang and Y. Zhang have contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号