首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A rapid and sensitive ultra-performance liquid chromatography and mass spectrometry (UPLC/MS) method was developed to simultaneously quantify seven monohydroxyl testosterone metabolites (16alpha-, 2alpha-, 7alpha-, 6alpha-, 2beta-, 6beta-, and 16beta-hydroxyl testosterones) in rat liver microsomes. The UPLC system used a short 1.7-microm particle size column coupled to a Sciex 4000 Q trap in multiple reaction monitor (MRM) mode. All hydroxyl testosterones were resolved within 2.5 min. A 4-day validation was performed to determine the linearity, repeatability, reproducibility and accuracy of the method in rat liver microsomes. This method is applicable to the measurement of the testosterone hydroxylase activity in biological matrices such as the liver microsome incubates.  相似文献   

2.
A sensitive method was developed for the simultaneous determination of omeprazole and its major metabolites 5-hydroxyomeprazole and omeprazole sulfone in human plasma by HPLC-electrospray mass spectrometry. Following liquid-liquid extraction HPLC separation was achieved on a ProntoSil AQ, C18 column using a gradient with 10 mM ammonium acetate in water (pH 7.25) and acetonitrile. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH(+) ions, m/z 346 for omeprazole, m/z 362 for 5-hydroxy-omeprazole and omeprazol-sulfone and m/z 300 for the internal standard (2-{[(3,5-dimethylpyridine-2-yl)methyl]thio}-1H-benzimidazole-5-yl)methanol. The limit of quantification (LOQ) achieved with this method was 5 ng/ml for 5-hydroxyomeprazole and 10 ng/ml for omeprazole and omeprazole-sulfone using 0.25 ml of plasma. Intra- and inter-assay variability was below 11% over the whole concentration range from 5 to 250 ng/ml for 5-hydroxyomeprazol and from 10 to 750 ng/ml for omeprazole and omeprazole-sulfone. The method was successfully applied to the determination of pharmacokinetic parameters of esomeprazole and the two major metabolites after a single dose and under steady state conditions.  相似文献   

3.
We have developed a high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-MS) method for quantifying docetaxel and paclitaxel in human plasma. The assay fulfills the need for defining the lower plasma concentrations of these antineoplastic agents that result from a number of changes in how these agents are used clinically. The assay uses paclitaxel as the internal standard for docetaxel, and vice versa; solid-phase extraction; a Phenomenex Hypersil ODS (5 micrometer, 100x2 mm) reversed-phase analytical column; an isocratic mobile phase of 0.1% formic acid in methanol-water (70:30, v/v); and mass spectrometric detection using electrospray positive mode electron ionization. The assay has a lower limit of quantitation (LLOQ) of 0.3 nM and is linear between 0.3 nM and 1 microM for docetaxel. For paclitaxel, the LLOQ was 1 nM, and the assay is linear between 1 nM and 1 microM. We demonstrated the suitability of this assay for docetaxel by using it to quantify the docetaxel concentrations in plasma of a patient given 40 mg/m(2) of docetaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. In a similar manner, the suitability of the assay for paclitaxel was demonstrated by using it to quantify the concentrations of paclitaxel in the plasma of a patient given 15 mg/m(2) of paclitaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. The LC-MS assay, which proved superior because of its greater sensitivity and relatively short (7 min) run time, should be an important tool for future pharmacokinetic analyses of docetaxel and paclitaxel.  相似文献   

4.
This method is the first analytical method for the detection and quantitation of carfentanil and naltrexone at clinically relevant concentrations using liquid chromatography-mass spectrometry. Samples were alkalinized with 100 microl of 1 M NaOH and extracted 2x with 2 ml of toluene. The extractions were combined and dried under N(2) at 40 degrees C in a H(2)O bath. Chromatography was performed using a Zirchrom PBD column and a mobile phase of 30:70 acetonitrile/10 mM ammonium acetate and 0.1 mM citrate (pH=4.4) at a flow rate of 0.3 ml/min. The lower limit of quantitation was 8.5 pg/ml for carfentanil and 0.21 ng/ml for naltrexone.  相似文献   

5.
A simple, sensitive and selective liquid chromatography coupled with electrospray ionization mass spectrometry (LC/ESI/MS) method for the determination of simvastatin (I) has been developed. After extraction by ethyl acetate, using lovastatin (II) as internal standard, solutes are separated on a C(18) column with a mobile phase consisting of methanol-water (9:1). Detection is performed on an atmospheric pressure ionization single quadruple mass spectrometer equipped with an ESI interface and operates in positive ionization mode. Simvastatin quantification was realized by computing peak area ratio (I/II) of the extracts analyzed in SIM mode (m/z: 441 and m/z: 427 for I and II, respectively) and comparing them with calibration curve (r=0.9997). Accuracy and precision for the assay were determined by calculating the intra-batch and inter-batch variation at three concentrations 0.1, 5.0, 10.0 ng/ml; the intra batch relative standard deviation (RSD) was less than 10% and ranged from 1.8 to 8.5%, respectively; the inter-batch RSD was less than 20% and ranged from 4.1 to 16.5%. The limit of detection was 0.05 ng/ml.  相似文献   

6.
A sensitive HPLC–MS method was developed for the simultaneous determination of cyclophosphamide and its metabolites 4-hydroxycyclophosphamide (aldocyclophosphamide), 4-ketocyclophosphamide, caboxyphosphamide and 3-dechloroethylifosfamide in human plasma. 4-Hydroxycyclophosphamide was converted with methylhydroxylamine to the stable methyloxime form. We used a solid-phase extraction with C18 cartridges followed by HPLC–MS with the single mass spectrometer SSQ 7000 of Finnigan. The limits of detection were 15 ng/ml for cyclophosphamide, 3-dechloroethylifosfamide and ketocyclophosphamide in each case and 30 ng/ml for carboxyphosphamide and 4-hydroxycyclophosphamide, respectively. First results of pharmacokinetics are shown.  相似文献   

7.
Profiling changes in the concentration of functionally related peptide hormones is critical to understanding the etiology of many diseases and therapies. We present novel data using nano liquid chromatography-mass spectrometry (LC-MS) to simultaneously measure a select group of vasoactive peptides (angiotensin, bradykinin, and related hormones) in 50-μl plasma samples, enabling repeated sampling in rodent models. By chromatographically resolving target peptides and using multiple reaction monitoring to enhance MS sensitivity, linear responses down to 10−17 mol were achieved. Purification of plasma peptides by either methanol precipitation or off-line high-performance liquid chromatography (HPLC) fractionation enabled the detection of endogenous peptides and revealed approaches for enhancing recovery. As proof of principle, seven vasoactive peptides were profiled before, during, and after acute angiotensin-converting enzyme (ACE) inhibition in an anesthetized rat. Of note was an apparent 10-fold increase in vasodilatory bradykinin that reversed after drug infusion but relatively minor changes in angiotensin II levels. Targeted MS analysis used to profile functionally related peptides or other analytes will greatly enhance our ability to define the sequence of events regulating complex and dynamic physiological processes.  相似文献   

8.
A method for the quantitative determination of perhexiline and its main hydroxylated metabolites in human plasma, based on liquid chromatography-mass spectrometry (LC-MS), was developed. The method used protein precipitation with acetonitrile followed by dilution with water and subsequent direct injection of the extract into the LC-MS system. Hexadiline was used as internal standard and the intra-assay coefficients of variation were 相似文献   

9.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

10.
Carboplatin is a platinum analogue that is used in a number of chemotherapeutic regimens for solid tumors, such as lung and ovarian carcinomas. Most often characterization of carboplatin's pharmacokinetic properties is based on measurement of platinum, rather than intact carboplatin. We have developed a sensitive LC-MS method for the determination of intact carboplatin in plasma ultrafiltrate and in tumor tissue. Carboplatin was extracted from rat plasma ultrafiltrate and tumor samples using solid-phase extraction cartridges and analyzed using reversed-phase chromatography with positive electrospray ionization followed by mass spectrometric detection. Using 50 microliter of plasma ultrafiltrate or 140 microliter of tumor homogenate supernatant, the extraction afforded a recovery of 58.7 and 45.8% for plasma and tumor, respectively. The mobile phase was 5% acetonitrile in 0.5% acetic acid at 0.2 ml/min that yielded a retention time of carboplatin of 2.2 min. The method has been validated at carboplatin plasma ultrafiltrate concentrations from 0.07 to 2.5 microgram/ml, and from 0.03 to 1.3 microgram/ml in tumor homogenates. The main advantages of this method compared with earlier methods are the ability to measure intact carboplatin in a sensitive and specific manner.  相似文献   

11.
A sensitive method was developed to determine fexofenadine in human plasma and urine by HPLC-electrospray mass spectrometry with MDL 026042 as internal standard. Extraction was carried out on C18 solid-phase extraction cartridges. The mobile phases used for HPLC were: (A) 12 mM ammonium acetate in water and (B) acetonitrile. Chromatographic separation was achieved on a LUNA CN column (10 cm x 2.0 mm I.D., particle size 3 microm) using a linear gradient from 40% B to 60% B in 10 min. The mass spectrometer was operated in the selected ion monitoring mode using the respective MH+ ions, m/z 502.3 for fexofenadine and m/z 530.3 for the internal standard. The limit of quantification achieved with this method was 0.5 ng/ml in plasma and 1.0 ng in 50 microl of urine. The method described was successfully applied to the determination of fexofenadine in human plasma and urine in pharmacokinetic studies.  相似文献   

12.
13.
Rimonabant is the first therapeutically relevant cannabinoid antagonist, licensed in Europe for treatment of obesity when a risk factor is associated. The objective of this study was to develop and validate a method for measurement of rimonabant in human plasma and hair using liquid chromatography coupled to mass spectrometry (LC-MS/MS). Rimonabant and AM-251 (internal standard) were extracted from 50muL of plasma or 10mg of hair using diethylether. Chromatography was performed on a 150mmx2.1mm C18 column using a mobile phase constituted of formate buffer/acetonitrile. Rimonabant was ionized by electrospray in positive mode, followed by detection with mass spectrometry. Data were collected either in full-scan MS or in full-scan MS/MS mode, selecting the ion m/z 463.1 for rimonabant and m/z 555.1 for IS. The most intense product ion of rimonabant (m/z 380.9) and IS (m/z 472.8) were used for quantification. Calibration curves covered a range from 2.5 (lower limit of quantification) to 1000.0ng/mL (upper limit of quantification) in plasma and from 2.5 to 1000.0pg/mg in hair. Validation results demonstrated that rimonabant could be accurately and precisely quantified in both matrixes: accuracy and precision were within 85-115% and within 15% of standard deviation, respectively. Stability studies in plasma showed that rimonabant was stable during the assay procedure, but a 30% decrease was observed for one concentration after 3 weeks at -20 degrees C. This simple and robust LC-MS/MS method can be used for measuring rimonabant concentrations in human plasma and hair either in clinical or in forensic toxicology.  相似文献   

14.
A rapid and sensitive method to determine colchicine in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. Colchicine and the internal standard (I.S.), tegafur, were extracted from the matrix with n-hexane:dichloromethane:isopropanol (300:150:15, v/v/v) and separated by reversed-phase high-performance liquid chromatography (HPLC) using formic acid:10 mM ammonium acetate:methanol (1:49:75, v/v/v) as the mobile phase in a run time of 2.5 min. Detection was carried out by electrospray positive ionization mass spectrometry in the multiple-reaction monitoring (MRM) mode. The assay was linear in the concentration range 0.050-10 ng/ml with intra- and inter-day precision (as relative standard deviation (R.S.D.)) of <2 and <7%, respectively. The method was applied to a pharmacokinetic study of colchicine in healthy volunteers given an oral dose of 2.0 mg.  相似文献   

15.
Although daily rhythms regulate multiple aspects of human physiology, rhythmic control of the metabolome remains poorly understood. The primary objective of this proof-of-concept study was identification of metabolites in human plasma that exhibit significant 24-h variation. This was assessed via an untargeted metabolomic approach using liquid chromatography-mass spectrometry (LC-MS). Eight lean, healthy, and unmedicated men, mean age 53.6 (SD ± 6.0) yrs, maintained a fixed sleep/wake schedule and dietary regime for 1 wk at home prior to an adaptation night and followed by a 25-h experimental session in the laboratory where the light/dark cycle, sleep/wake, posture, and calorific intake were strictly controlled. Plasma samples from each individual at selected time points were prepared using liquid-phase extraction followed by reverse-phase LC coupled to quadrupole time-of-flight MS analysis in positive ionization mode. Time-of-day variation in the metabolites was screened for using orthogonal partial least square discrimination between selected time points of 10:00 vs. 22:00 h, 16:00 vs. 04:00 h, and 07:00 (d 1) vs. 16:00 h, as well as repeated-measures analysis of variance with time as an independent variable. Subsequently, cosinor analysis was performed on all the sampled time points across the 24-h day to assess for significant daily variation. In this study, analytical variability, assessed using known internal standards, was low with coefficients of variation <10%. A total of 1069 metabolite features were detected and 203 (19%) showed significant time-of-day variation. Of these, 34 metabolites were identified using a combination of accurate mass, tandem MS, and online database searches. These metabolites include corticosteroids, bilirubin, amino acids, acylcarnitines, and phospholipids; of note, the magnitude of the 24-h variation of these identified metabolites was large, with the mean ratio of oscillation range over MESOR (24-h time series mean) of 65% (95% confidence interval [CI]: 49-81%). Importantly, several of these human plasma metabolites, including specific acylcarnitines and phospholipids, were hitherto not known to be 24-h variant. These findings represent an important baseline and will be useful in guiding the design and interpretation of future metabolite-based studies.  相似文献   

16.
A rapid gas chromatography-mass spectrometric method for the determination of nalmefene in human plasma is described. The procedure involves protein precipitation, extraction with ethanol-chloroform mixture and derivatization with pentafluropropionic anhydride. The deuterated analog of nalmefene, 6beta-naltrexol-d(7), was used as the internal standard. Quantitation was achieved on a HP-1 column (12 mx0.2 mm I.D.) with negative chemical ionization (NCI) using methane:ammonia (95:5) as the reagent gas. The standard curves were fitted using a quadratic equation with the curve encompassing a range of 0.5 to 200 ng/ml, and the intra- and inter-assay variations for three different nalmefene levels were less than 10% throughout. The limit of quantitation was found to be 0.5 ng/ml. The method described is highly specific and reproducible, and could also be applied for the determination of naltrexone and 6beta-naltrexol. Application of the method to actual human plasma samples is demonstrated.  相似文献   

17.
18.
A sensitive, simple and fast liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 1-(4-chlorophenyl)biguanide (4CPB), was developed and validated over a concentration range of 1-2000 ng/mL using only 50 microL of blood or plasma. After a simple solvent precipitation procedure, the supernatant was analysed directly by HPLC-MS/MS. Separation was achieved using an ethyl-linked phenyl reverse phase column with polar endcapping with an acetonitrile-water-formic acid gradient. Mass spectrometry was performed using a triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The elution of PG (254.07-->169.99), CG (252.12-->195.02) and 4CPB (212.06-->153.06) was monitored using selected reaction monitoring. The three compounds and the internal standard (chloroproguanil) were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in blood and plasma. The limit of quantification of PG and CG was 1 ng/mL and 5 ng/mL for 4CPB in rat blood and plasma. The extraction efficiency of PG, CG and 4CPB from rat blood and plasma was higher than 73%. The intra- and inter-assay variability of PG, CG and 4CPB were within 12% and the accuracy within +/-5%. This new assay offers higher sensitivity and a much shorter run time over earlier methods.  相似文献   

19.
Paclitaxel is an anticancer agent extracted from the bark of the yew tree and is widely used in chemotherapy for solid tumors, including non-small cell lung cancer and ovarian carcinoma. Most assays to measure paclitaxel in plasma require a large amount of sample (0.4-1 ml) to achieve the necessary sensitivity, and are not suitable when only small sample sizes are available. To circumvent this latter limitation, we developed a sensitive liquid chromatography-mass spectrometry (LC-MS) method for the determination of paclitaxel in plasma based on the use of small sample volumes (50 microl plasma). A solid phase extraction procedure was employed that enabled the eluent to be directly injected onto a reversed phase chromatographic HPLC system using positive electrospray ionization followed by mass spectrometric detection. The extraction recoveries of paclitaxel were 98 and 83% from plasma and brain tissues, respectively. The mobile phase consisted of 50% acetonitrile in 0.1% formic acid that was pumped at 0.2 ml/min to yield a retention time for paclitaxel of 6.2 and 5.4 min for cephalomannine, the internal standard. The method has been validated at paclitaxel plasma concentrations from 0.036 to 9.9 microg/ml, and from 0.054 to 1.96 microg/ml in brain homogenates. A sensitive and specific assay for paclitaxel has been developed that has the advantages of using small sample sizes, and a single extraction step without solvent evaporation.  相似文献   

20.
We report a rapid and sensitive method for separation and quantitation of free fatty acids (FFAs) in human plasma using high-performance liquid chromatography (HPLC). Two established techniques of lipid extraction were investigated and modified to achieve maximal FFA recovery in a reasonably short time period. A modified Dole extraction method exhibited greater recovery (90%) and short processing times (30 min) compared to the method of Miles et al. Reversed-phase HPLC using UV detection was used for plasma FFA separation and quantitation. Two phenacyl ester derivatives, phenacyl bromide and p-bromophenacyl bromide, were investigated in order to achieve optimal separation of individual plasma FFAs (saturated and unsaturated) with desirable detection limits. Different chromatographic parameters including column temperature, column type and elution profiles (isocratic and gradient) were tested to achieve optimal separation and recovery of fatty acids. Phenacyl bromide esters of plasma fatty acids were best resolved using an octadecylsilyl column with endcapped silanol groups. An isocratic elution method using acetonitrile–water (83:17) at 2 ml/min with UV detection at 242 nm and a column temperature of 45°C was found to optimally resolve the six major free fatty acids present in human plasma (myristic [14:0], palmitic [16:0], palmitoleic [16:1], stearic [18:0], oleic [18:1] and linoleic [18:2]), with a run time of less than 35 min and detection limits in the nmol range. The entire process including plasma extraction, pre-column derivatization, and HPLC quantitation can be completed in 90 min with plasma samples as small as 50 μl. Over a wide physiological range, plasma FFA concentrations determined using our HPLC method agree closely with measurements using established TLC–GC methods (r2≥0.95). In addition, by measuring [14C] or [3H] radioactivity in eluent fractions following HPLC separation of plasma FFA, this method can also quantitate rates of FFA turnover in vivo in human metabolic studies employing isotopic tracers of one or more fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号