首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(-/-) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(-/-) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(-/-) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(-/-) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(-/-) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(-/-) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.  相似文献   

3.
4.
Vascular Endothelial Growth Factor (VEGF) has been typically considered to be an endothelial-specific growth factor. However, it was recently demonstrated that VEGF can interact with non endothelial cells. In this study, we tested whether vascular smooth muscles cells (VSMCs) can express VEGF receptors, such as flk-1, flt-1, and neuropilin (NP)-1, and respond to VEGF in vitro. In cultured VSMCs, flk-1 and flt-1 expression was inversely related to cell density. The expression of flk-1 was down-regulated with increasing passage numbers. However, NP-1 levels were not affected by cell density or passage numbers. Flk-1, Flt-1, and NP-1 protein levels were confirmed by Western Blotting. Although the functional mature form of Flk-1 protein is expressed at low levels in VSMCs, phosphorylation of Flk-1 following VEGF(165) stimulation was still observed. SMCs migrated significantly in response to VEGF(165) and VEGF-E, whereas Placenta Growth Factor (PlGF) induced migration only at higher concentrations. Since VEGF-E is a specific activator of flk-1 while PlGF specifically activates only flt-1, SMC migration induced by VEGF(165) is likely to be mediated primarily through the flk-1 receptor. VSMCs did not significantly proliferate in response to VEGF(165), PlGF, and VEGF-E. In conclusion, our studies demonstrate the presence of VEGF receptors on VSMCs that are functional. These studies also indicate that in vivo, VEGF may play a role in modulating the response of VSMCs.  相似文献   

5.
Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic mitogen. However, chronic hypoxia is generally not found to increase mammalian skeletal muscle capillarity. We sought to determine the effect of chronic hypoxia (8 wk, inspired O2 fraction = 0.12) on skeletal muscle gene expression of VEGF, its receptors (flt-1 and flk-1), basic fibroblast growth factor, and transforming growth factor-beta1. Wistar rats were exposed to chronic hypoxia (n = 12) or room air (n = 12). After the exposure period, six animals from each group were subjected to a single 1-h treadmill exercise bout (18 m/min on a 10 degrees incline) in room air while the remaining six animals served as rest controls. Morphological analysis revealed that chronic hypoxia did not increase skeletal muscle capillarity. Northern blot analyses showed that chronic hypoxia decreased resting VEGF, flt-1, and flk-1 mRNA by 23, 68, and 42%, respectively (P < 0.05). The VEGF mRNA response to exercise was also decreased (4.1- and 2.7-fold increase in room air and chronic hypoxia, respectively, P < 0.05). In contrast, neither transforming growth factor-beta1 nor basic fibroblast growth factor mRNA was significantly altered by chronic hypoxia. In conclusion, prolonged exposure to hypoxia attenuated gene expression of VEGF and its receptors flt-1 and flk-1 in rat gastrocnemius muscle. These findings may provide an explanation for the lack of mammalian skeletal muscle angiogenesis that is observed after chronic hypoxia.  相似文献   

6.
A novel gene delivery system targeting cells expressing VEGF receptors   总被引:20,自引:0,他引:20  
Two ligand oligopeptides GV1 and GV2 were designed according to the putative binding region of VEGF to its receptors.GV1,GV2 and endosome releasing oligopeptide HA20 were conjugated with poly-L-lysine or protamine and the resulting conjugates could interact with DNA in a noncovalent bond to form a complex.Using pSV2-β-galactosidase as a reporter gene,it has been demonstrated that exogenous gene was transferred into bovine aortic arch-derived endothelial cells (ABAE) and human malignant melanoma cell lines (A375) in vitro.In vivo experiments,exogenous gene was transferred into tumor vascular endothelial cells and tumor cells of subcutaneously transplanted human colon cancer LOVO,human malignant melanoma A375 and human hepatoma graft in nude mice.This system could also target gene to intrahepatically transplanted human hepatoma injected via portal vein in nude mice.These results are correlated with the relevant receptors(flt-1,flk-1/KDR) expression on the targeted cells and tissues.  相似文献   

7.
Vasculotropin (VAS), also called vascular endothelial growth factor (VEGF) or vascular permeability factor, is a secreted growth factor whose target cell specificity has been reported as restricted to vascular endothelium. Its effects are mediated by at least two distinct membrane-spanning tyrosine kinase receptors, KDR and flt-1, the expression of which also seems restricted to vascular endothelium. We describe here that cultured human retinal pigment epithelial (HRPE) cells express both KDR and flt-1 receptors, bind VAS/VEGF on two high affinity sites (apparent Kd of 9 and 210 pM corresponding to 940 and 18,800 sites per cell) and proliferate or migrate upon recombinant VAS/VEGF addition. HRPE cells also express the mRNA corresponding to the 121 and 165 amino acid forms of VAS/VEGF. HRPE cells release in their own culture medium and store in their extracellular matrix self-mitogenic and chemoattractant factors indistinguishable from 121 and 165 VAS/VEGF isoforms. The autocrine role of VAS/VEGF was confirmed by the inhibition of these bioactivities by neutralizing specific anti-VAS/VEGF antibodies. © 1995 Wiley-Liss, Inc.  相似文献   

8.
9.
The flt-1 gene encodes for both the full-length receptor Flt-1 (VEGFR-1) and a soluble form designated sFlt-1. sFlt-1 carries the VEGF-binding domain of Flt-1 as well as a 31-amino-acid stretch derived from an intron and tightly binds VEGF, suppressing its angiogenic activity. The flt-1 gene has so far been identified only in mammals and is highly expressed in placenta as well as in vascular endothelial cells. In placenta, sFlt-1 is abundant in the trophoblast layer during pregnancy, suggesting that it is a negative regulator to excess angiogenesis and vascular permeability at the feto-maternal border in mammals. However, we show here for the first time that the flt-1 gene exists and is highly conserved in chickens. Surprisingly, the chicken flt-1 gene also encodes for sFlt-1 in addition to the full-length receptor. Similar to the mammalian sFlt-1, chicken sFlt-1 carries the VEGF-binding domain and a 31-amino-acid carboxyl region derived from an intron, which was significantly homologous to that in mammals. Chicken sFlt-1 is expressed early in embryogenesis. These findings strongly suggest that the natural antiangiogenic molecule sFlt-1 is widely conserved in vertebrates and regulates the angiogenic process.  相似文献   

10.
Blood vessel formation requires the integrated regulation of endothelial cell proliferation and branching morphogenesis, but how this coordinated regulation is achieved is not well understood. Flt-1 (vascular endothelial growth factor [VEGF] receptor 1) is a high affinity VEGF-A receptor whose loss leads to vessel overgrowth and dysmorphogenesis. We examined the ability of Flt-1 isoform transgenes to rescue the vascular development of embryonic stem cell-derived flt-1-/- mutant vessels. Endothelial proliferation was equivalently rescued by both soluble (sFlt-1) and membrane-tethered (mFlt-1) isoforms, but only sFlt-1 rescued vessel branching. Flk-1 Tyr-1173 phosphorylation was increased in flt-1-/- mutant vessels and partially rescued by the Flt-1 isoform transgenes. sFlt-1-rescued vessels exhibited more heterogeneous levels of pFlk than did mFlt-1-rescued vessels, and reporter gene expression from the flt-1 locus was also heterogeneous in developing vessels. Our data support a model whereby sFlt-1 protein is more efficient than mFlt-1 at amplifying initial expression differences, and these amplified differences set up local discontinuities in VEGF-A ligand availability that are important for proper vessel branching.  相似文献   

11.
Activated hepatic stellate cells produce vascular endothelial growth factor (VEGF). VEGF has been shown to act on mesenchymal cells as well. If hepatic stellate cells can express FLT tyrosine receptor family, flt-1 and KDR/flk-1, their function might be regulated by VEGF in an autocrine manner. This hypothesis was tested using hepatic stellate cells isolated from normal rats. Northern blot analysis and immunocytochemical study revealed that hepatic stellate cells cultured for 3 days on plastic dishes expressed both flt-1 and KDR/flk-1. When the culture was prolonged to 10 days, the flt-1 mRNA expression was increased, whereas both KDR/flk-1 mRNA and protein expressions diminished. DNA and collagen syntheses were minimal in the cells cultured for 3 days, but marked in those cultured for 10 days. Addition of recombinant human VEGF to the culture medium did not change both syntheses but attenuated an increase of smooth muscle alpha-actin expression in the cells during culture on plastic dishes and also contraction of collagen gels on which the cells were cultured. We conclude that VEGF may inhibit contraction of hepatic stellate cells appearing during activation by culture, probably through attenuation of smooth muscle alpha-actin expression via upregulated VEGF receptor, flt-1.  相似文献   

12.
bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cell–cell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.  相似文献   

13.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

14.
VEGF is shown to be a vascular permeability factor (VPF) as well as a growth stimulatory factor on endothelial cells. In the hepatic sinusoids, endothelial cells express flt-1 and KDR/flk-1, receptors for VEGF. These cells, in primary culture, proliferate in response to VEGF stimulation. However, the role of VEGF as VPF in the hepatic sinusoids is to be elucidated. The effect of VEGF on the porosity of sinusoidal endothelial cells was studied. Sinusoidal endothelial cells were isolated from rats and cultured in DMEM containing 10% FCS on plastic dishes coated with type I collagen for 16 and 48 h for morphological examination and cell-number measurement, respectively. When the cells were cultured without VEGF addition, their number was decreased at 48 h compared to that at 16 h. However, the number was unchanged in the cells cultured with VEGF at 10 ng/mL and increased with addition of VEGF at 100 ng/mL. Scanning electron microscopic examination revealed that sieve-plate appearance of the cells was impaired in culture with no VEGF addition, but the appearance was maintained in culture with VEGF at 10 ng/mL or more. The cells cultured with VEGF at 100 ng/mL showed significantly increased number and size of pores compared to the cells cultured with VEGF at 10 ng/mL, suggesting that sinusoidal endothelial cells proliferating in response to VEGF may increase their porosity. It is concluded that VEGF can act as VPF in the hepatic sinusoids through regulation of endothelial cell porosity.  相似文献   

15.
16.
17.
18.
Vascular endothelial growth factor (VEGF) gene gives rise to several distinct isoforms of VEGF. Those isoforms differ in biochemical and biological properties, and it has been reported that their expression patterns are tissue and age specific as well. We investigated the expression levels of VEGF isoforms (VEGF121, VEGF165, VEGF183, VEGF189) and its receptors (VEGFR-1, flt-1 and VEGFR-2, flk-1/KDR) in the anterior cruciate ligament (ACL) of 2- to 3-week-, 2-month-, and 18-month-old New Zealand White rabbits using Sybr green Real-Time RT-PCR. VEGF isoforms and both receptors were expressed in the ACL at all investigated ages. VEGF121 was found to be the most abundant isoform at the ages under investigation, followed by VEGF165, VEGF189 and VEGF183. All isoforms showed decreased expression levels with age, however the larger membrane bound isoforms, VEGF183 and VEGF189, showed the most striking age-associated decrease in expression level. VEGFR-1 expression levels increased with age, while the expression level of VEGFR-2 expression was highest at 2-3 weeks and was significantly lower at 2 and 18 months of age. Distinct age-associated differences in the expression level of VEGF isoforms as well as their receptors suggest differential physiological functions during development, maturation and ageing of the ACL.  相似文献   

19.
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-beta(1) (TGF-beta(1)) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O(2) fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-beta(1), and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA (P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P < 0.05), absent TGF-beta(1) and flt-1 mRNA responses to exercise, and an approximately threefold (P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.  相似文献   

20.
《Gene》1998,208(2):297-305
The flt-1 tyrosine kinase gene encodes a high affinity receptor for Vascular Endothelial Growth Factor, and belongs to the so-called `7-Ig' or flt gene family which has characteristics of 7-Immunoglobulin (Ig)-like domains in the extracellular region. This is structurally distantly related to 5-Ig domain-containing receptors such as Fms/Kit/PDGF-R. However, the whole genomic organization for any 7-Ig receptor gene has not been determined yet. To examine the genomic structure of flt-1 and the evolutionary relationship between genes of the 7-Ig and 5-Ig receptor families, we isolated the mouse genomic DNAs carrying all exons of the flt-1 gene. The mouse flt-1 gene consisted of 30 exons, whose exon–intron boundaries were highly related to those in the 5-Ig receptor genes, except for the amino terminal region. The sequences corresponding to the first and second Ig-domains in the flt-1 gene were encoded by four exons, whereas this region was encoded by only two exons in the 5-Ig receptor genes. These results raise the interesting possibility that deletion or insertion mutations of introns in one of these receptor genes took place in the evolutionary generation of the other receptor genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号