首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Rates of DNA Duplication and Mitochondrial DNA Insertion in the Human Genome   总被引:11,自引:0,他引:11  
The hundreds of mitochondrial pseudogenes in the human nuclear genome sequence (numts) constitute an excellent system for studying and dating DNA duplications and insertions. These pseudogenes are associated with many complete mitochondrial genome sequences and through those with a good fossil record. By comparing individual numts with primate and other mammalian mitochondrial genome sequences, we estimate that these numts arose continuously over the last 58 million years. Our pairwise comparisons between numts suggest that most human numts arose from different mitochondrial insertion events and not by DNA duplication within the nuclear genome. The nuclear genome appears to accumulate mtDNA insertions at a rate high enough to predict within-population polymorphism for the presence/absence of many recent mtDNA insertions. Pairwise analysis of numts and their flanking DNA produces an estimate for the DNA duplication rate in humans of 2.2 × 10–9 per numt per year. Thus, a nucleotide site is about as likely to be involved in a duplication event as it is to change by point substitution. This estimate of the rate of DNA duplication of noncoding DNA is based on sequences that are not in duplication hotspots, and is close to the rate reported for functional genes in other species.  相似文献   

2.
At least 0.08% of the Apis mellifera nuclear genome contains sequences that originated from mitochondria. These nuclear copies of mitochondrial sequences (numts) are scattered all over the honeybee chromosomes and have originated by multiple independent insertions of mitochondrial DNA (mtDNA) as evident by phylogenetic analysis. Apart from original insertions, moderate duplications of numts also contributed to the present pattern and distribution of mitochondrial sequences in honeybee chromosomes. Assimilation of mitochondrial genes in the nuclear genome is mediated by extensive fragmentations of the original inserts. Replication slippage seems to be a major mechanism by which small sequences are inserted or deleted from mtDNA destined to nucleus. Most of the honeybee numts (84%) are located in the nongenic regions. The majority (94%) of the numts that are located in predicted nuclear genes have originated from mitochondrial genes coding for cytochrome oxidase and NADH dehydrogenase subunits. On the other hand, the mitochondrial rRNA or tRNA gene sequences are predominantly (88%) located in nongenic regions of the genome. Evidences also support for exertion of purifying selection on numts located in specific genes. Comparative analysis of numts of European, African, and Africanized honeybees suggests that numt evolution in A. mellifera is probably not demarked by speciation time frame but may be a continuous and dynamic process.  相似文献   

3.
Triant DA  DeWoody JA 《Genetica》2008,132(1):21-33
Nuclear sequences of mitochondrial origin (numts) are common among animals and plants. The mechanism(s) by which numts transfer from the mitochondrion to the nucleus is uncertain, but their insertions may be mediated in part by chromosomal repair mechanisms. If so, then lineages where chromosomal rearrangements are common should be good models for the study of numt evolution. Arvicoline rodents are known for their karyotypic plasticity and numt pseudogenes have been discovered in this group. Here, we characterize a 4 kb numt pseudogene in the arvicoline vole Microtus rossiaemeridionalis. This sequence is among the largest numts described for a mammal lacking a completely sequenced genome. It encompasses three protein-coding and six tRNA pseudogenes that span ∼25% of the entire mammalian mitochondrial genome. It is bordered by a dinucleotide microsatellite repeat and contains four transposable elements within its sequence and flanking regions. To determine the phylogenetic distribution of this numt among the arvicolines, we characterized one of the mitochondrial pseudogenes (cytochrome b) in 21 additional arvicoline species. Average rates of nucleotide substitution in this arvicoline pseudogene are estimated as 2.3 × 10−8 substitutions/per site/per year. Furthermore, we performed comparative analyses among all species to estimate the age of this mitochondrial transfer at nearly 4 MYA, predating the origin of most arvicolines. All sequences generated in this study have been deposited within the GenBank database.  相似文献   

4.
Molecular tools have become prominent in ecology and evolution. A target of choice for molecular ecologists and evolutionists is mitochondrial DNA (mtDNA), whose many advantages have also convinced broad-scale, pragmatic programmes such as barcode initiatives. Of course, mtDNA is also of interest to human geneticists investigating mitochondrial diseases. Studies using mtDNA are however put at great risk by the inadvertent co-amplification or preferred amplification of nuclear pseudogenes (numts). A posteriori analysis of putative mtDNA sequences can help in removing numts but faces severe limitations (e.g. recently translocated numts will most of the time go unnoticed). Counter-measures taken a priori, i.e. explicitly designed for avoiding numt co-amplification or preferred amplification, are appealing but have never been properly assessed. Here we investigate the efficiency of four such measures (mtDNA enrichment, cDNA amplification, long-range amplification and pre-PCR dilution) on a common set of numt cases, showing that mtDNA enrichment is the worst performer while the use of pre-PCR dilution is a simple, yet robust method to prevent the pollution of putative mtDNA datasets with numts. Therefore, straightforward recommendations can be made that, if followed, will considerably increase the confidence in the mitochondrial origin of any mtDNA-like sequence.  相似文献   

5.
The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state.  相似文献   

6.
Sequences from nuclear mitochondrial pseudogenes (numts) that originated by transfer of genetic information from mitochondria to the nucleus offer a unique opportunity to compare different regimes of molecular evolution. Analyzing a 1621-nt-long numt of the rRNA specifying mitochondrial DNA residing on human chromosome 3 and its corresponding mitochondrial gene in 18 anthropoid primates, we were able to retrace about 40 MY of primate rDNA evolutionary history. The results illustrate strengths and weaknesses of mtDNA data sets in reconstructing and dating the phylogenetic history of primates. We were able to show the following. In contrast to numt-DNA, (1) the nucleotide composition of mtDNA changed dramatically in the different primate lineages. This is assumed to lead to significant misinterpretations of the mitochondrial evolutionary history. (2) Due to the nucleotide compositional plasticity of primate mtDNA, the phylogenetic reconstruction combining mitochondrial and nuclear sequences is unlikely to yield reliable information for either tree topologies or branch lengths. This is because a major part of the underlying sequence evolution model — the nucleotide composition — is undergoing dramatic change in different mitochondrial lineages. We propose that this problem is also expressed in the occasional unexpected long branches leading to the “common ancestor” of orthologous numt sequences of different primate taxa. (3) The heterogeneous and lineage-specific evolution of mitochondrial sequences in primates renders molecular dating based on primate mtDNA problematic, whereas the numt sequences provide a much more reliable base for dating.[Reviewing Editor: Dr. Rafael Zardoya]  相似文献   

7.
Numts are nonfunctional mitochondrial sequences that have translocated into nuclear DNA, where they evolve independently from the original mitochondrial DNA (mtDNA) sequence. Numts can be unintentionally amplified in addition to authentic mtDNA, complicating both the analysis and interpretation of mtDNA-based studies. Amplification of numts creates particular issues for studies on the noncoding, hypervariable 1 mtDNA region of gorillas. We provide data on putative numt sequences of the coding mitochondrial gene cytochrome oxidase subunit II (COII). Via polymerase chain reaction (PCR) and cloning, we obtained COII sequences for gorilla, orangutan, and human high-quality DNA and also from a gorilla fecal DNA sample. Both gorilla and orangutan samples yielded putative numt sequences. Phylogenetically more anciently transferred numts were amplified with a greater incidence from the gorilla fecal DNA sample than from the high-quality gorilla sample. Data on phylogenetically more recently transferred numts are equivocal. We further demonstrate the need for additional investigations into the use of mtDNA markers for noninvasively collected samples from gorillas and other primates.  相似文献   

8.
Transposed copies of mitochondrial DNA into the nucleus (numts) are widespread, but to date they have not been described from the Coleoptera (beetles). Here we report the discovery of a numt derived from a mitochondrial ribosomal RNA gene in Australian tiger beetles (genus Rivacindela). The loss of function of the numt was confirmed by high proportion of transversions, numerous noncompensatory substitutions in stem regions, and large deletions in functionally important sequences. Phylogenetic analysis of orthologous numt sequences was performed together with the corresponding mtDNA lineage for a study of origination and establishment of the transposed copies in closely related populations and species. All numt sequences were strongly supported to be monophyletic, indicating a single origin of this element. However, populations were polymorphic for the presence of the numt, and phylogenetic trees based on the numt sequences showed inconsistencies with the corresponding mtDNA phylogeny, suggesting slower processes of fixation compared to the mtDNA sequences. In a side-by-side comparison with their mtDNA sister lineage, the nucleotide substitution rate of 1.66 x 10(-8) substitutions/site/year in the numts was approximately equal to the average rate of mtDNA in this group but substantially higher than previous estimates of neutral nuclear rates in vertebrates. The numt clade was affected by several deletions but no insertions, with estimates of nucleotide loss exceeding the rate of nucleotide substitutions by approximately five times. The young age of the Rivacindela numt clade, their absence in species outside of a narrow lineage of related individuals, and the high rate of deletions suggest that insertions do not persist in this group, which is consistent with the view that comparatively small genomes as those of Coleoptera harbor fewer mitochondrial and other nuclear pseudogenes.  相似文献   

9.
Mitochondfial DNA sequences transferred to the nucleus give rise to the so-called nuclear mitochondrial DNA (numt). In the GenBank database, 244 numts have been found in six orders of birds (Anseriformes, Columbiformes, Falconiformes, Charadriiformes, Galliformes and Passeriformes). Sequences alignment (NCBI-BLASTN) was carried out with mitochondrial and corresponding nuclear genome sequences in nine vertebrate species. The sequences with high homology were considered as numts. The number of numts ranged from 15 in chicken to 159 in chimpanzee. The sequences of numts in macaque, chimpanzee, and human spanned 100% of the entire mammalian mitochondrial genome. The reconstructed frequency of the mitochondrial gene transferred to the nucleus demonstrated that the rRNA genes had high frequencies than other mitochondrial genes. Using the RepeatMasker program, the transposable elements were detected in the flanking regions of each numt. The results showed that less than 5% of the flanking sequences were made up of repetitive elements in chicken. The GC content of 5′- and 3′-flanking regions of numts in nine species was less than 44%. The analysis of the flanking sequences provided a valuable understanding for future study on mechanism of mitochondrial gene transfer to the nucleus and the site of numt integration.  相似文献   

10.
Triant DA  DeWoody JA 《Gene》2007,401(1-2):61-70
Mitochondrial DNA translocations to the nucleus (numt pseudogenes) are pervasive among eukaryotes, but copy number within the nuclear genome varies widely among taxa. As an increasing number of genomes are sequenced in their entirety, the origins, transfer mechanisms and insertion sites of numts are slowly being characterized. We investigated mitochondrial transfers within a genetically diverse rodent lineage and here report 15 numts totaling 21.8 kb that are harbored within the nuclear genome of the vole Microtus rossiaemeridionalis. The 15 numts total 21.8 kb and range from 0.39 to over 3.0 kb in length. Phylogenetic analyses revealed that these numts resulted from three independent insertions to the nucleus, two of which were followed by subsequent nuclear duplication events. The dates of the two translocations that led to subsequent duplications were estimated at 1.97 and 1.19 MYA, which coincide with the origin and radiation of the genus Microtus. Numt sequence data from five Microtus species were used to estimate an average rate of nucleotide substitution as 2.6x10(-8) subs/site/yr. This substitution rate is higher than in many other mammals, but is concordant with the elevated rate of mtDNA substitution in this lineage. Our data suggest that numt translocation in Microtus is more extensive than in either Mus or in Rattus, consistent with the elevated rate of speciation, karyotypic rearrangement, and mitochondrial DNA evolution in Microtus.  相似文献   

11.
Translocation of mtDNA into the nuclear genome, also referred to as numt, was first reported in the domestic cat (Felis catus) by Lopez et al. (1994). The Lopez-numt consisted of a translocation of 7.9 kbp of mtDNA that inserted into the domestic cat chromosome D2 around 1.8 million years ago. More than a decade later, the release of the domestic cat whole-genome shotgun sequences (1.9x coverage) provides the resource to obtain more comprehensive insight into the extent of mtDNA transfer over time in the domestic cat genome. MegaBLAST searches revealed that the cat genome harbors a wide variety of numts (298 320 bp), one-third of which likely correspond to the Lopez-numt tandem repeat, whereas the remaining numts are probably derived from multiple independent insertions, which in some cases were followed by segmental duplication after insertion in the nucleus. Numts were detected across most cat chromosomes, but the number of numts assigned to chromosomes is underestimated due to the relatively high number of numt sequences with insufficient flanking sequence to map. The catalog of cat numts provides a valuable resource for future studies in Felidae species, including its use as a tool to avoid numt contaminations that may confound population genetics and phylogenetic studies.  相似文献   

12.
Kerr KC 《Génome》2010,53(12):1103-1109
Nuclear mitochondrial pseudogenes, or "numts", are nonfunctional copies of mitochondrial genes that have been translocated to the nuclear genome. Numts have been used to study differences in mutation rates between the nuclear and mitochondrial genomes, but have also been implicated as troublesome for phylogenetic studies and DNA-based species identification (i.e., DNA barcoding). In this study, a suspected numt discovered during a study of mitochondrial cytochrome c oxidase I (COI) diversity in North American birds was targeted and sequenced from tyrant flycatchers (family: Tyrannidae). In total, the numt was found in five taxa representing two genera. Substitution rates were compared between COI and numt sequences. None of the numt sequences harboured stop codons nor frameshift mutations, but phylogenetic analysis revealed they had accumulated more amino acid substitutions than the mitochondrial COI sequences. Mitochondrial COI appeared to be preferentially amplified in most cases, but methods for numt detection are discussed for cases like this where sequences lack obvious features for identification. Because of its persistence across a broad taxonomic lineage, this numt could form a valuable model system for studying evolution in numts. The full size of the numt and its location within the nuclear genome are yet to be determined.  相似文献   

13.

Background

A fraction of the Neanderthal mitochondrial genome sequence has a similarity with a 5,839-bp nuclear DNA sequence of mitochondrial origin (numt) on the human chromosome 1. This fact has never been interpreted. Although this phenomenon may be attributed to contamination and mosaic assembly of Neanderthal mtDNA from short sequencing reads, we explain the mysterious similarity by integration of this numt (mtAncestor-1) into the nuclear genome of the common ancestor of Neanderthals and modern humans not long before their reproductive split.

Principal Findings

Exploiting bioinformatics, we uncovered an additional numt (mtAncestor-2) with a high similarity to the Neanderthal mtDNA and indicated that both numts represent almost identical replicas of the mtDNA sequences ancestral to the mitochondrial genomes of Neanderthals and modern humans. In the proteins, encoded by mtDNA, the majority of amino acids distinguishing chimpanzees from humans and Neanderthals were acquired by the ancestral hominins. The overall rate of nonsynonymous evolution in Neanderthal mitochondrial protein-coding genes is not higher than in other lineages. The model incorporating the ancestral hominin mtDNA sequences estimates the average divergence age of the mtDNAs of Neanderthals and modern humans to be 450,000–485,000 years. The mtAncestor-1 and mtAncestor-2 sequences were incorporated into the nuclear genome approximately 620,000 years and 2,885,000 years ago, respectively.

Conclusions

This study provides the first insight into the evolution of the mitochondrial DNA in hominins ancestral to Neanderthals and humans. We hypothesize that mtAncestor-1 and mtAncestor-2 are likely to be molecular fossils of the mtDNAs of Homo heidelbergensis and a stem Homo lineage. The dN/dS dynamics suggests that the effective population size of extinct hominins was low. However, the hominin lineage ancestral to humans, Neanderthals and H. heidelbergensis, had a larger effective population size and possessed genetic diversity comparable with those of chimpanzee and gorilla.  相似文献   

14.
Although nuclear copies of mitochondrial DNA (numts) can originate from any portion of the mitochondrial genome, evidence from humans suggests that more variable parts of the mitochondrial genome, such as the mitochondrial control region (MCR), are under-represented in the nucleus. This apparent deficit might arise from the erosion of sequence identity in numts originating from rapidly evolving mitochondrial sequences. However, the extent to which mitochondrial sequence properties impacts the number of numts detected in genomic surveys has not been evaluated. In order to address this question, we: (1) conducted exhaustive BLAST searches of MCR numts in three hominoid genomes; (2) assessed numt prevalence across the four MCR sub-domains (HV1, CCD, HV2, and MCRF); (3) estimated their insertion rates in great apes (Hominoidea); and (4) examined the relationship between mitochondrial DNA variability and numt prevalence in sequences originating from MCR and coding regions of the mitochondrial genome. Results indicate a marked deficit of numts from HV2 and MCRF MCR sub-domains in all three species. These MCR sub-domains exhibited the highest proportion of variable sites and the lowest number of detected numts per mitochondrial site. Variation in MCR insertion rate between lineages was also observed with a pronounced burst in recent integrations within chimpanzees and orangutans. A deficit of numts from HV2/MCRF was observed regardless of age, whereas HV1 is under-represented only in older numts (>25 million years). Finally, more variable mitochondrial genes also exhibit a lower identity with nuclear copies and because of this, appear to be under-represented in human numt databases.  相似文献   

15.
Antunes A  Ramos MJ 《Genomics》2005,86(6):708-717
Nuclear inserted copies of mitochondrial origin (numts) vary widely among eukaryotes, with human and plant genomes harboring the largest repertoires. Numts were previously thought to be absent from fish species, but the recent release of three fish nuclear genome sequences provides the resource to obtain a more comprehensive insight into the extent of mtDNA transfer in fishes. From the sequence analyses of the genomes of Fugu rubripes, Tetraodon nigroviridis, and Danio rerio, we have identified 2, 5, and 10 recent numt integrations, respectively, which integrated into those genomes less than 0.6 million years (Myr) ago. Such results contradict the hypothesis of absence or rarity of numts in fishes, as (i) the ratio of numts to the total size of the nuclear genome in T. nigroviridis was superior to the ratio observed in several higher vertebrate species (e.g., chicken, mouse, and rat), and only surpassed by humans, and (ii) the mtDNA coverage transferred to the nuclear genome of D. rerio is exceeded only by human and mouse, within the whole range of eukaryotic genomes surveyed for numts. Additionally, 335, 336, and 471 old numts (>12.5 Myr) were detected in F. rubripes, T. nigroviridis, and D. rerio, respectively. Surprisingly, old numts are inserted preferentially into known or predicted genes, as inferred for recent numts in human. However, because in fish genomes such integrations are old, they are likely to represent evolutionary successes and they may be considered a potential important evolutionary mechanism for the enhancement of genomic coding regions.  相似文献   

16.
Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies.  相似文献   

17.
The identification of inadvertently sequenced mitochondrial pseudogenes (numts) is critical to any study employing mitochondrial DNA sequence data. Failure to discriminate numts correctly can confound phylogenetic reconstruction and studies of molecular evolution. This is especially problematic for ribosomal mtDNA genes. Unlike protein-coding loci, whose pseudogenes tend to accumulate diagnostic frameshift or premature stop mutations, functional ribosomal genes are not constrained to maintain a reading frame and can accumulate insertion-deletion events of varying length, particularly in nonpairing regions. Several authors have advocated using structural features of the transcribed rRNA molecule to differentiate functional mitochondrial rRNA genes from their nuclear paralogs. We explored this approach using the mitochondrial 12S rRNA gene and three known 12S numts from the human genome in the context of anthropoid phylogeny and the inferred secondary structure of primate 12S rRNA. Contrary to expectation, each of the three human numts exhibits striking concordance with secondary structure models, with little, if any, indication of their pseudogene status, and would likely escape detection based on structural criteria alone. Furthermore, we show that the unwitting inclusion of a particularly ancient (18-25 Myr old) and surprisingly cryptic human numt in a phylogenetic analysis would yield a well-supported but dramatically incorrect conclusion regarding anthropoid relationships. Though we endorse the use of secondary structure models for inferring positional homology wholeheartedly, we caution against reliance on structural criteria for the discrimination of rRNA numts, given the potential fallibility of this approach.  相似文献   

18.
Mitochondrial DNA sequences are frequently transferred into the nuclear genome, giving rise to numts (nuclear DNA sequences of mitochondrial origin). So far, the evolutionary history of numts has largely been studied by using single genomes. Here, we present the first attempt to study numt evolution in a comparative manner by using a pairwise genomic alignment. The total number of numts was estimated to be 452 in human and 469 in chimpanzee. numts that were found in both genomes at identical loci were deemed to be orthologous; 391 numts (>80%) were classified as such. The preponderance of orthologous numts is due to the very short divergence time between the 2 hominoids. The rest of numts were deemed to be nonorthologous. Nonorthologous numts were subdivided into 1) ancestral numts that have lost an ortholog in one species through deletion (12 in human and 11 in chimpanzee), 2) new numts acquired by the insertion of a mitochondrial sequence after the divergence of the 2 species (34 in human and 46 in chimpanzee), and 3) paralogous numts created by the tandem duplication of a preexisting numt (2 in human). This approach also enabled us to reconstruct the numt repertoire in the common ancestor of humans and chimpanzees (409 numts). Our comparative approach is also useful in identifying the exact boundaries of numts.  相似文献   

19.
Mitochondrial pseudogenes in nuclear chromosomes (numts) have been detected in the genomes of a diverse range of eukaryotic species. However, the numt content of different genomes and their properties is not uniform, and study of these differences provides insight into the mechanisms and dynamics of genome evolution in different organisms. In the genus Drosophila, numts have previously only been identified on a genome-wide scale in the melanogaster subgroup. The present study extends the identification to 11 species of the Drosophila genus. We identify a total of 302 numts and show that the numt complement is highly variable in Drosophilids, ranging from just 4 in D. melanogaster to 67 in D. willistoni, broadly correlating with genome size. Many numts have undergone large-scale rearrangements in the nucleus, including interruptions, inversions, deletions and duplications of sequence of variable size. Estimating the age of the numts in the nucleus by phylogenetic tree reconstruction reveals the vast majority of numts to be recent gains, 90% having arisen on terminal branches of the species tree. By identifying paralogs and counting duplications among the extant numts we estimate that 23% of extant numts arose through post-insertion duplications. We estimate genus average rates of insertion of 0.75 per million years, and a duplication rate of 0.010 duplications per numt per million years.  相似文献   

20.
Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA), we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1) led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号