首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as well as embryo loss during development may occur even in cloned embryos reconstructed with nuclei from preimplantation-stage embryos, and these abnormalities are not specific to somatic cloning.  相似文献   

2.
纪慧丽  卢晟盛  潘登科 《遗传》2014,36(12):1211-1218
体细胞核移植(Somatic cell nuclear transfer, SCNT)是指将高度分化的体细胞移入到去核的卵母细胞中发育并最终产生后代的技术。然而, 体细胞克隆的总体效率仍然处于一个较低的水平, 主要原因之一是由于体细胞供体核不完全的表观遗传重编程, 包括DNA甲基化、组蛋白乙酰化、基因组印记、X染色体失活和端粒长度等修饰出现的异常。使用一些小分子化合物以及Xist基因的敲除或敲低等方法能修复表观遗传修饰错误, 辅助供体核的重编程, 从而提高体细胞克隆效率, 使其更好地应用于基础研究和生产实践。文章对体细胞核移植后胚胎发育过程中出现的异常表观遗传修饰进行了综述, 并着重论述了近年来有关修复表观遗传错误的研究进展。  相似文献   

3.
The technique of interspecies somatic cell nuclear transfer, in which interspecies cloned embryos can be reconstructed by using domestic animal oocytes as nuclear recipients and endangered animal or human somatic cells as nuclear donors, can afford more opportunities in endangered animal rescue and human tissue transplantation, but the application of this technique is limited by extremely low efficiency which may be attributed to donor nucleus not fully reprogrammed by xenogenic cytoplasm. In this study, goat fetal fibroblasts (GFFs) were used as nuclear donors, in vitro-matured sheep oocytes were used as nuclear recipients, and a two-stage nuclear transfer procedure was performed to improve the developmental ability of goat-sheep interspecies clone embryos. In the first stage nuclear transfer (FSNT), GFFs were injected into the ooplasm of enucleated sheep metaphase-II oocytes, then non-activated reconstructed embryos were cultured in vitro, so that the donor nucleus could be exposed to the ooplasm for a period of time. Subsequently, in the second stage nuclear transfer, FSNT-derived non-activated reconstructed embryo was centrifuged, and the donor nucleus was then transferred into another freshly enucleated sheep oocyte. Compared with the one-stage nuclear transfer, two-stage nuclear transfer could significantly enhance the blastocyst rate of goat-sheep interspecies clone embryos, and this result indicated that longtime exposure to xenogenic ooplasm benefits the donor nucleus to be reprogrammed. The two-stage nuclear transfer procedure has two advantages, one is that the donor nucleus can be exposed to the ooplasm for a long time, the other is that the problem of oocyte aging can be solved.  相似文献   

4.
体细胞核移植技术是指将一个分化的体细胞核置入去核的卵母细胞中,并发育产生与供体细胞遗传背景一致的克隆后代的技术。目前,世界上通过体细胞核移植技术已经产生了许多的克隆动物。但克隆过程中还存在着很多问题,比如,克隆效率太低、克隆个体常伴有表型异常和早亡等,从而使该技术应有的应用潜力不能得到充分的发挥。体细胞表观遗传学重编程的不完全或紊乱是造成核移植诸多问题的主要原因。近十多年来,人们对体细胞核移植后的重编程进行了广泛的研究,其核心内容包括核及核外结构的重塑、DNA甲基化模式的重建、基因印迹和x染色体失活、组蛋白乙酰化模式的重建、端粒长度恢复等,以期能够对其重编程加以人为干预,从而提高动物克隆效率。本文拟对体细胞核移植诱导的重编程研究进展加以综述,希望对体细胞重编程机制的阐明有所启发。  相似文献   

5.
Nuclei of differentiated cells can acquire totipotency following transfer into the cytoplasm of oocytes. While the molecular basis of this nuclear reprogramming remains unknown, the developmental potential of nuclear-transfer embryos is influenced by the cell-cycle stage of both donor and recipient. As somatic H1 becomes immunologically undetectable on bovine embryonic nuclei following transfer into ooplasm and reappears during development of the reconstructed embryo, suggesting that it may act as a marker of nuclear reprogramming, we investigated the link between cell-cycle state and depletion of immunoreactive H1 following nuclear transplantation. Blastomere nuclei at M-, G1-, or G2-phase were introduced into ooplasts at metaphase II, telophase II, or interphase, and the reconstructed embryos were processed for immunofluorescent detection of somatic histone H1. Immunoreactivity was lost more quickly from donor nuclei at metaphase than at G1 or G2. Regardless of the stage of the donor nucleus, immunoreactivity was lost most rapidly when the recipient cytoplast was at metaphase and most slowly when the recipient was at interphase. When the recipient oocyte was not enucleated, however, immunoreactive H1 remained in the donor nucleus. The phosphorylation inhibitors 6-DMAP, roscovitine, and H89 inhibited the depletion of immunoreactive H1 from G2, but not G1, donor nuclei. In addition, immunoreactive H1 was depleted from mouse blastomere nuclei following transfer into bovine oocytes. Finally, expression of the developmentally regulated gene, eIF-1A, but not of Gapdh, was extinguished in metaphase recipients but not in interphase recipients. These results indicate that evolutionarily conserved cell-cycle-regulated activities, nuclear elements, and phosphorylation-linked events participate in the depletion of immunoreactive histone H1 from blastomere nuclei transferred in oocyte cytoplasm and that this is linked to changes in gene expression in the transferred nucleus.  相似文献   

6.
Nuclear transfer of a somatic nucleus into an enucleated oocyte has demonstrated in several mammalian species that the chromatin of a differentiated nucleus can be reprogrammed so as to be able to direct the full development of the reconstructed embryo. This review focus on the timing of the early events that allow the return of somatic chromatin to a totipotent state. Our understanding of the modifications associated with chromatin remodeling is limited by the low amount of biological material available in mammals at early developmental stages and the fact that very few genetic studies have been conducted with nuclear transfer embryos. However, the importance of several factors such as the covalent modifications of DNA through the methylation of CpG dinucleotides, the exchange of histones through a reorganized nuclear membrane, and the interaction between cytoplasmic oocyte components and nuclear complexes in the context of nuclear transfer is becoming clear. A better characterization of the changes in somatic chromatin after nuclear transfer and the identification of oocyte factors or structures that govern the formation of a functional nucleus will help us to understand the relationship between chromatin structure and cellular totipotency.  相似文献   

7.
The aim of this study was to investigate effect of cytoplast on the development competence of reconstructed embryos derived from inter-subspecies somatic cell nucleus transfer (SCNT). First, the development potency of reconstructed embryos produced by transferring Boer goat fibroblast cell nucleus of different ages into enucleated Sannen goat ova was evaluated in order to determine which age of nuclear donor is favorable for the reconstructed embryos development. Secondly, the another component of reconstructed embryos, "cytoplast," was evaluated by comparing the effect of ovum cytoplast derived from Sannen male symbol x Boer female symbol descendant on the reconstructed embryos development to that of Sannen goat ovum cytoplast. The results revealed that the development rate of the reconstructed embryos derived from 2 months old Boer goat somatic cells was the highest, their gestation rate was up to 50%, and one viable male offspring was obtained. The cytoplast derived from the crossbreeding goats improves the development competence of reconstructed embryos, which birth rate was 5.5%. The genetic identification of offspring by using PCR-SSCP analysis confirmed that these cloned kids were derived from the donor. The results above reveal that the cytoplast of Sannen goat ovum could induce the dedifferentiation of somatic cell nuclei derived from Boer goat, but the reprogramming process of these reconstructed embryos seems incomplete, probably due to some incorrect processes happened after implantation. Relatedness components of nucleus donor in cytoplast of the crossbreeding goat may be helpful to induce the dedifferentiation of somatic cell nuclei completely and improve the development competence of the reconstructed embryos.  相似文献   

8.
Bovine oocyte cytoplasm has been shown to support the development of nuclei from other species up to the blastocyst stage. Somatic cell nuclei from buffalo fetal fibroblasts have been successfully reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts. The aim of this study was to compare the in vitro development of fetal and adult buffalo cloned embryos after the fusion of a buffalo fetal fibroblast, cumulus or oviductal cell with bovine oocyte cytoplasm. The fusion of oviductal cells with enucleated bovine oocytes was higher than that of fetal fibroblasts or cumulus cells (83% versus 77 or 73%, respectively). There was a significantly higher cleavage rate (P < 0.05) for fused nuclear transferred embryos produced by fetal fibroblasts and oviductal cells than for cumulus cells (84 or 78% versus 68%, respectively). Blastocyst development in the nuclear transferred embryos produced by fetal fibroblasts was higher (P < 0.05) than those produced either by cumulus or oviductal cells. Chromosome analysis of cloned blastocysts confirmed the embryo was derived from buffalo donor nuclei. This study demonstrates that nuclei from buffalo fetal cells could be successfully reprogrammed to develop to the blastocyst stage at a rate higher than nuclei from adult cells.  相似文献   

9.
During differentiation, somatic nuclei acquire highly specialized DNA and chromatin modifications, which are thought to result in cellular memory of the differentiated state. Upon somatic nuclear transfer into oocytes, the donor nucleus may have to undergo reprogramming of these epigenetic marks in order to achieve totipotency. This may involve changes in epigenetic features similar to those that occur in normal embryos during early development. However, there is accumulating evidence that epigenetic reprogramming is severely deficient in cloned embryos. Several reports reveal inefficient demethylation and inappropriate reestablishment of DNA methylation in quantitative and qualitative patterns on somatic nuclear transfer. Here we examine histone H3 lysine 9 (H3-K9) methylation and acetylation in normal embryos and in those created by somatic nuclear transfer. We find that H3-K9 methylation is reprogrammed in parallel with DNA methylation in normal embryos. However, the majority of cloned embryos exhibit H3-K9 hypermethylation associated with DNA hypermethylation, suggesting a genome-wide failure of reprogramming. Strikingly, the precise epigenotype in cloned embryos depends on the donor cell type, and the proportion of embryos with normal epigenotypes correlates closely with the proportion developing to the blastocyst stage. These results suggest a mechanistic link between DNA and histone methylation in the mammalian embryo and reveal an association between epigenetic marks and developmental potential of cloned embryos.  相似文献   

10.
The fact that the nucleus of a differentiated somatic cell can be reprogrammed in order to sustain embryonic development is now well established. Experiments of somatic cell nuclear transfer (cloning) have proved that a foreign nucleus introduced into an enucleated oocyte can give rise to physiologically normal offsprings, with a normal lifespan. Such evidence of genome expression plasticity is also observed experimentally with heterokaryons, created by the fusion or the nuclear transfer between two somatic cells, where differentiated nuclei are able to express genes characteristic of the host cell. However, the epigenetic mechanisms that permit nuclear plasticity remain poorly understood. In this paper we present the main evidences showing important modifications of the large scale organisation of chromosomal domains and of the DNA methylation pattern upon nuclear transfer and during the first cleavages. These modifications of epigenetic marks, brought by an intimate contact between the chromatin and the recipient oocyte cytoplasmic factors, appear essential for further development. They are established over the first cell cycles of development. The onset of embryonic genome activation and the first cellular differentiation events that occur over the implantation period are two additional check-points of reprogramming that appear to be also highly dependent on epigenetic alterations. Beyond those stages, defective placental functions might be directly responsible for the fetal and postnatal physiopathologies frequently observed in cloned animals. No direct link between preimplantation reprogramming defaults, placental dysfunctions and low development to term has been established yet. The epigenetics studies which are now used to characterise loci specific and probably genotype dependent alterations in cloned animals of different species will provide invaluable help to define the role of epigenesis in the achievement of a developmental program.  相似文献   

11.

Background  

The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT.  相似文献   

12.
Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p < 0.05) percentage of blastocyst development was observed in the NT embryos activated by calcium ionophore and 6-DMAP when compared with 6-DMAP alone (33% versus 17%). The results indicate that the somatic nuclei from buffalo can be reprogrammed after transfer to enucleated bovine oocytes, resulting in the production of cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.  相似文献   

13.
体细胞克隆在绵羊、山羊、牛、猪等家畜中获得了成功,但目前的克隆效率非常低。克隆效率低使家畜体细胞克隆技术在畜牧业生产及其他领域的应用受到极大的限制,问题的根源在于对体细胞克隆中核重编程的分子机理缺乏了解。供体细胞核移入去核的卵母细胞后,必须经过后成表观遗传修饰的重编程,从而恢复供体细胞核的全能性,才能保证重构胚的正常发育及个体的正常生长。本文从移植核的重构、DNA甲基化总体改变、组蛋白修饰、X染色体失活、端粒长度和端粒酶活性恢复、印迹基因及其他与发育相关基因的表达及核重编程的影响因素等几个方面探讨了体细胞克隆中的核重编程机理,为克隆效率提高的方法研究提供理论依据。  相似文献   

14.
“多莉”羊的诞生是生物界的一个里程碑,它之所以引起如此大的轰动主要是因为它来源于培养的成年绵羊乳腺上皮细胞,这是人类第一次证明分化的体细胞可以被重编程后恢复全能性并最终分化发育成一个动物个体。这说明哺乳动物分化的体细胞核仍具有全套的遗传物质并能够被卵母细胞逆转恢复全能性。然而,关于多莉的供体细胞来源却一直是克隆领域的一个谜。由于体细胞克隆的效率非常低,而用于核移植的供体细胞悬液中往往含有多种类型的细胞,这使得我们很难确切地知道最终获得的克隆动物是来源于哪一种细胞。这种不确定性给我们研究核移植诱导体细胞重编程的机制带来了很大的困难,因此,对供体细胞的研究也是核移植研究领域的一个重要课题,这包括各种组织来源的体细胞是否均可以用于核移植,终末分化的体细胞是否能够用于核移植,组织干细胞是否更有利于体细胞重编程,供体细胞的分化状态是否与核移植的效率有关,死亡的体细胞是否也可以用于核移植等等。本文综述了核移植中与供体细胞相关的最新研究进展。  相似文献   

15.
Summary This study reconstructed heterogeneous embryos using camel skin fibroblast cells as donor karyoplasts and the bovine oocytes as recipient cytoplasts to investigate the reprogramming of camel somatic cell nuclei in bovine oocyte cytoplasm and the developmental potential of the reconstructed embryos. Serum-starved skin fibroblast cells, obtained from adult camel, were electrically fused into enucleated bovine metaphase II (MII) oocytes that were matured in vitro. The fused eggs were activated by Inomycin with 2 mM/ml 6-dimethylaminopurine. The activated reconstructed embryos were cocultured with bovine cumulus cells in synthetic oviduct fluid supplemented with amino acid (SOFaa) and 10% fetal calf serum for 168 h. Results showed that 53% of the injected oocytes were successfully fused, 34% of the fused eggs underwent the first egg cleavage, and 100% of them developed to four- or 16-cell embryo stages. The first completed cleavage of xenonuclear transfer camel embryos occurred between 22 and 48 h following activation. This study demonstrated that the reconstructed embryos underwent the first embryonic division and that the reprogramming of camel fibroblast nuclei can be initiated in enucleated bovine MII oocytes.  相似文献   

16.
人-山羊异种核移植胚胎发育的初步研究   总被引:2,自引:0,他引:2  
以体外分离培养的人胚胎成纤维细胞为核供体,经血清饥饿培养后,通过显微操作技术移入山羊去核卵母细胞中,采用化学方法激活重组胚.通过体外培养观察,2-细胞胚胎发育率可达51.33%,4-细胞发育率为31.42%,但发育至桑椹胚阶段的胚胎数目大大减少,仅为9.73%.虽然目前尚未能获得异种核移植囊胚,但实验结果说明山羊成熟卵母细胞可以支持人体细胞核完成重编程,人-山羊异种体细胞核移植重组胚可在体外完成其早期发育.  相似文献   

17.
Production of genetically identical non-human primates through somatic cell nuclear transfer (SCNT) can provide diseased genotypes for research and clarify embryonic stem cell potentials. Understanding the cellular and molecular changes in SCNT is crucial to its success. Thus the changes in the first cell cycle of reconstructed zygotes after nuclear transfer (NT) of somatic cells in the Long-tailed Macaque (Macaca fascicularis) were studied. Embryos were reconstructed by injecting cumulus and fibroblasts from M. fascicularis and M. silenus, into enucleated M. fascicularis oocytes. A spindle of unduplicated premature condensed chromosome (PCC spindle) from the donor somatic cell was formed at 2 hours after NT. Following activation, the chromosomes segregated and moved towards the two PCC spindle poles, then formed two nuclei. Twenty-four hours after activation, the first cell division occurred. A schematic of the first cell cycle changes following injection of a somatic cell into an enucleated oocyte is proposed. Ninety-three reconstructed embryos were transferred into 31 recipients, resulting in 7 pregnancies that were confirmed by ultrasound; unfortunately none progressed beyond 60 days.  相似文献   

18.
Effect of telophase enucleation on bovine somatic nuclear transfer   总被引:5,自引:0,他引:5  
Liu JL  Wang MK  Sun QY  Xu Z  Chen DY 《Theriogenology》2000,54(6):989-998
Telophase enucleation has been proven to be an efficient method for preparing recipient cytoplasts in bovine embryonic nuclear transfer (2, 11). This research was designed to study in vitro development of bovine oocytes containing transferred somatic cell nuclei, reconstructed by using enucleated in vitro-matured oocytes 32 h of age at telophase II stage as recipient cytoplasts, compared with those 24 h of age at metaphase II stage. Two protocols for donor cell injection were adopted, i.e., subzonal injection (SUZI) and intracytoplasmic injection (ICI). Bovine oviduct epithelial cells (BOECs) and bovine cumulus cells (BCCs) from an adult cow were used as nuclear donors for these experiments. In SUZI groups, the fusion rate of donor cells, both BOECs and BCCs, with MII enucleated oocytes were higher than those with TII enucleated oocytes (54% vs. 41% and 53% vs. 39%, respectively; P<0.05), but the development rates to morula plus blastocyst stage in MII groups were lower than those in TII groups (22% vs. 39% and 21% vs. 41%, respectively; P<0.05). In ICI groups, about 26% of enucleated MII oocytes injected with BOECs or BCCs cleaved and only small parts of them developed to blastocyst stage (4% and 3%, respectively; P>0.05). When BOECs or BCCs were intracytoplasmically injected into oocytes enucleated at TII stage, no blastocyst was formed in either donor cell group and no cleavage occurred in BOEC group. Our data demonstrated that telophase enucleation is beneficial to early embryo development when bovine somatic nuclei are transferred by subzonal injection. However, it is harmful when donor cells are directly injected into the cytoplast of the enucleated oocytes.  相似文献   

19.
Cloning methods are now well described and becoming routine. Yet the frequency at which live cloned offspring are produced (as a percentage of starting one-cell embryos) remains below 5% irrespective of nucleus donor species or cell type. In considering the cause(s) of this universally low efficiency, features common to all cloning protocols are strong candidates. One such shared feature is enucleation; the donor nucleus is inserted into an enucleated cytoplast (ooplast). However, it is not known whether a nucleus-free metaphase II oocyte is developmentally impaired other than by virtue of lacking chromosomes, or if in nuclear transfer protocols, enucleation removes factors necessary to reprogram the incoming nucleus. We have here investigated the role of enucleation in nuclear transfer. Three hours after the injection of cumulus cell nuclei into non-enucleated oocytes, 65% contained two distinct metaphase spindles, with the remainder exhibiting a single spindle in which oocyte-derived and nucleus donor chromosomes were mixed. However, staining only one hour after donor nucleus insertion revealed that most had two discrete spindles. In the absence of staining, the donor nucleus spindle was not visible. This provided a straightforward way to identify and select the oocyte-derived metaphase chromosomes 1 h after donor nucleus microinjection, and 34-41% cloned embryo developed to the morulla-blastocyst stage following Sr(2+)-induced activation. Of these, two (1% of starting one-cell embryos) developed to term, an efficiency which is comparable to that obtained for controls (6 clone; 1-2%) in which enucleation preceded nuclear transfer. In conclusion, the timing of the removal of oocyte chromosomes before or after injection of somatic nucleus had no effect on cloned embryo development. These findings argue that neither oocyte chromosome depletion per se, nor the potential removal of "reprogramming" factors during enucleation explain the low efficiency of nuclear transfer cloning.  相似文献   

20.
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer(SCNT) have poorer developmental potential than those from intrasubspecies SCNT.Based on our previous study that Holstein dairy bovine(HD) mitochondrial DNA(mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development,we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer(LY) as recipient cytoplast according to mtDNA haplotypes determined...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号