首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微卫星标记对12个中外牛品种群体遗传结构的研究   总被引:11,自引:0,他引:11  
李荣岭  张桂香  王志刚  王慧  韩旭  王冬蕾  王均辉 《遗传》2007,29(12):1463-1470
选用联合国粮农组织(FAO)和国际动物遗传学会(ISAG)推荐的12对微卫星引物, 采用荧光标记–多重PCR技术, 检测了9个中国地方黄牛品种和3个外来牛品种的遗传多样性。利用等位基因频率计算出各群体的平均遗传杂合度(H)、多态信息含量(PIC)和群体间的DA及DS遗传距离。基于DA遗传距离, 用UPGMA法进行聚类分析, 结果12个中外牛品种被聚为4类: Ⅰ类属于南方黄牛品种, 包括恩施牛、黎平牛、昭通牛和川南山地牛; Ⅱ类属于中原黄牛品种, 包括郏县红牛、早胜牛和平陆山地牛; Ⅲ类属于北方黄牛, 包括延边牛和长白地方牛; Ⅳ类属于外来牛品种, 包括西门塔尔牛、夏洛来牛和德国黄牛。研究结果为中国地方牛品种的保护和利用提供了理论依据。  相似文献   

2.
The ongoing revolution in DNA sequencing technology now enables the reading of thousands of millions of nucleotide bases in a single instrument run. However, this data quantity is often compromised by poor confidence in the read quality. The identification of genetic polymorphisms from this data is therefore problematic and, combined with the vast quantity of data, poses a major bioinformatics challenge. However, once these difficulties have been addressed, next-generation sequencing will offer a means to identify and characterize the wealth of genetic polymorphisms underlying the vast phenotypic variation in biological systems. We describe the recent advances in next-generation sequencing technology, together with preliminary approaches that can be applied for single nucleotide polymorphism discovery in plant species.  相似文献   

3.
Establishing the sex of individuals in wild systems can be challenging and often requires genetic testing. Genotyping‐by‐sequencing (GBS) and other reduced‐representation DNA sequencing (RRS) protocols (e.g., RADseq, ddRAD) have enabled the analysis of genetic data on an unprecedented scale. Here, we present a novel approach for the discovery and statistical validation of sex‐specific loci in GBS data sets. We used GBS to genotype 166 New Zealand fur seals (NZFS, Arctocephalus forsteri) of known sex. We retained monomorphic loci as potential sex‐specific markers in the locus discovery phase. We then used (i) a sex‐specific locus threshold (SSLT) to identify significantly male‐specific loci within our data set; and (ii) a significant sex‐assignment threshold (SSAT) to confidently assign sex in silico the presence or absence of significantly male‐specific loci to individuals in our data set treated as unknowns (98.9% accuracy for females; 95.8% for males, estimated via cross‐validation). Furthermore, we assigned sex to 86 individuals of true unknown sex using our SSAT and assessed the effect of SSLT adjustments on these assignments. From 90 verified sex‐specific loci, we developed a panel of three sex‐specific PCR primers that we used to ascertain sex independently of our GBS data, which we show amplify reliably in at least two other pinniped species. Using monomorphic loci normally discarded from large SNP data sets is an effective way to identify robust sex‐linked markers for nonmodel species. Our novel pipeline can be used to identify and statistically validate monomorphic and polymorphic sex‐specific markers across a range of species and RRS data sets.  相似文献   

4.
Nine Chinese yak breeds (Maiwa,Tianzhu White,Qinghai Plateau,Sibu,Zhongdian,Pall,Tibetan High Mountain,Jiulong,and Xin-jiang) and Gayal were analyzed by means of 16 microsatellite markers to determine the level of genetic variation within populations,genetic relationship between populations,and population structure for each breed.A total of 206 microsatellite alleles were observed.Mean F-statistics (0.056) for 9 yak breeds indicated that 94.4% of the genetic variation was observed within yak breeds and 5.6% of the genetic variation existed amongst breeds.The Neighbor-Joining phylogenetic free was constructed based on Nei's standard genetic dis-tances and two clusters were obtained.The Gayal separated from the yaks far away and formed one cluster and 9 yak breeds were grouped together.The analysis of population structure for 9 yak breeds and the Gayal showed that they resulted in four clusters; one clus-ter includes yaks from Tibet Autonomous Region and Qinghai Province,one cluster combines Zhongdian,Maiwa,and Tianzhu White,and Jiulong and Xinjiang come into the third cluster.Pali was mainly in the first cluster (90%),Jiulong was mainly in the second cluster (87.1%),Zhongdian was primarily in the third cluster (83%),and the other yak breeds were distributed in two to three clusters.The Gayal was positively left in the fourth cluster (99.3%).  相似文献   

5.
本研究应用联合国粮农组织(FAO)和国际动物遗传学会(ISAG)推荐的10对微卫星引物,结合荧光–多重PCR技术,检测了10个中国地方黄牛品种和3个外来牛品种的基因型。通过计算基因频率、多态信息含量和遗传杂合度,以Nei’s遗传距离和Nei’s标准遗传距离为基础,采用非加权组对算术平均聚类法构建了聚类图,分析了13个牛品种的群体内遗传变异和群体间遗传关系。并以聚类分析和群体结构分析为基础,将13个中外黄牛品种分为三类:Ⅰ类属于普通黄牛品种,包括延边牛、沿江牛、长白地方牛、蒙古牛、阿勒泰白头牛、哈萨克牛、复州牛和西藏牛;Ⅱ类属于含有瘤牛血统的黄牛品种,包括日喀则驼峰牛和阿沛甲咂牛;Ⅲ类属于外来牛品种,包括德国黄牛、西门塔尔牛和夏洛来牛。研究结果为加强我国地方黄牛品种种质特性研究以及地方牛品种资源的保护与利用提供了科学的依据。  相似文献   

6.
Indigenous cattle of India belong to the species, Bos indicus and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G?>?A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the Bos indicus and Bos taurus cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ~30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.  相似文献   

7.
Together with their sister subspecies Bos taurus, zebu cattle (Bos indicus) have contributed to important socioeconomic changes that have shaped modern civilizations. Zebu cattle were domesticated in the Indus Valley 8000 years before present (YBP). From the domestication site, they expanded to Africa, East Asia, southwestern Asia and Europe between 4000 and 1300 YBP, intercrossing with B. taurus to form clinal variations of zebu ancestry across the landmass of Afro‐Eurasia. In the past 150 years, zebu cattle reached the Americas and Oceania, where they have contributed to the prosperity of emerging economies. The zebu genome is characterized by two mitochondrial haplogroups (I1 and I2), one Y chromosome haplogroup (Y3) and three major autosomal ancestral groups (Indian‐Pakistani, African and Chinese). Phenotypically, zebu animals are recognized by their hump, large ears and excess skin. They are rustic, resilient to parasites and capable of bearing the hot and humid climates of the tropics. Many resources are available to study the zebu genome, including commercial arrays of SNP, reference assemblies and publicly available genotypes and whole‐genome sequences. Nevertheless, many of these resources were initially developed to support research and subsidize industrial applications in B. taurus, and therefore they can produce bias in data analysis. The combination of genomics with precision agriculture holds great promise for the identification of genetic variants affecting economically important traits such as tick resistance and heat tolerance, which were naturally selected for millennia and played a major role in the evolution of B. indicus cattle.  相似文献   

8.
The European rabbit (Oryctolagus cuniculus) is a domesticated species with one of the broadest ranges of economic and scientific applications and fields of investigation. Rabbit genome information and assembly are available (oryCun2.0), but so far few studies have investigated its variability, and massive discovery of polymorphisms has not been published yet for this species. Here, we sequenced two reduced representation libraries (RRLs) to identify single nucleotide polymorphisms (SNPs) in the rabbit genome. Genomic DNA of 10 rabbits belonging to different breeds was pooled and digested with two restriction enzymes (HaeIII and RsaI) to create two RRLs which were sequenced using the Ion Torrent Personal Genome Machine. The two RRLs produced 2 917 879 and 4 046 871 reads, for a total of 280.51 Mb (248.49 Mb with quality >20) and 417.28 Mb (360.89 Mb with quality >20) respectively of sequenced DNA. About 90% and 91% respectively of the obtained reads were mapped on the rabbit genome, covering a total of 15.82% of the oryCun2.0 genome version. The mapping and ad hoc filtering procedures allowed to reliably call 62 491 SNPs. SNPs in a few genomic regions were validated by Sanger sequencing. The Variant Effect Predictor Web tool was used to map SNPs on the current version of the rabbit genome. The obtained results will be useful for many applied and basic research programs for this species and will contribute to the development of cost‐effective solutions for high‐throughput SNP genotyping in the rabbit.  相似文献   

9.
Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)‐based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP‐based wheat markers have been made available via the use of next‐generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial‐scale breeding programmes. To identify exome‐based co‐dominant SNP‐based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re‐sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co‐dominant. Validation of a subset of these putative co‐dominant markers confirmed that 96% were true polymorphisms and 65% were co‐dominant SNP assays. The new co‐dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web‐based database to facilitate their use on genotyping programmes worldwide.  相似文献   

10.
Analysis of genetic diversity and population structure among Quercus fabri populations is essential for the conservation and utilization of Q. fabri resources. Here, the genetic diversity and structure of 158 individuals from 13 natural populations of Quercus fabri in China were analyzed using genotyping‐by‐sequencing (GBS). A total of 459,564 high‐quality single nucleotide polymorphisms (SNPs) were obtained after filtration for subsequent analysis. Genetic structure analysis revealed that these individuals can be clustered into two groups and the structure can be explained mainly by the geographic barrier, showed gene introgression from coastal to inland areas and high mountains could significantly hinder the mutual introgression of genes. Genetic diversity analysis indicated that the individual differences within groups are greater than the differences between the two groups. These results will help us better understand the genetic backgrounds of Q. fabri.  相似文献   

11.
12.
There has been remarkably little attention to using the high resolution provided by genotyping‐by‐sequencing (i.e., RADseq and similar methods) for assessing relatedness in wildlife populations. A major hurdle is the genotyping error, especially allelic dropout, often found in this type of data that could lead to downward‐biased, yet precise, estimates of relatedness. Here, we assess the applicability of genotyping‐by‐sequencing for relatedness inferences given its relatively high genotyping error rate. Individuals of known relatedness were simulated under genotyping error, allelic dropout and missing data scenarios based on an empirical ddRAD data set, and their true relatedness was compared to that estimated by seven relatedness estimators. We found that an estimator chosen through such analyses can circumvent the influence of genotyping error, with the estimator of Ritland (Genetics Research, 67, 175) shown to be unaffected by allelic dropout and to be the most accurate when there is genotyping error. We also found that the choice of estimator should not rely solely on the strength of correlation between estimated and true relatedness as a strong correlation does not necessarily mean estimates are close to true relatedness. We also demonstrated how even a large SNP data set with genotyping error (allelic dropout or otherwise) or missing data still performs better than a perfectly genotyped microsatellite data set of tens of markers. The simulation‐based approach used here can be easily implemented by others on their own genotyping‐by‐sequencing data sets to confirm the most appropriate and powerful estimator for their data.  相似文献   

13.
The objectives of this study were to develop breed-specific single nucleotide polymorphisms (SNPs) in five pig breeds sequenced with Illumina's Genome Analyzer and to investigate their usefulness for breed assignment purposes. DNA pools were prepared for Duroc, Landrace, Large White, Pietrain and Wild Boar. The total number of animals used for sequencing was 153. SNP discovery was performed by aligning the filtered reads against Build 7 of the pig genome. A total of 313,964 high confidence SNPs were identified and analysed for the presence of breed-specific SNPs (defined in this context as SNPs for which one of the alleles was detected in only one breed). There were 29,146 putative breed-specific SNPs identified, of which 4441 were included in the PorcineSNP60 beadchip. Upon re-examining the genotypes obtained using the beadchip, 193 SNPs were confirmed as being breed specific. These 193 SNPs were subsequently used to assign an additional 490 individuals from the same breeds, using the sequenced individuals as reference populations. In total, four breed assignment tests were performed. Results showed that for all methods tested 99% of the animals were correctly assigned, with an average probability of assignment of at least 99.2%, indicating the high utility of breed-specific markers for breed assignment and traceability. This study provides a blueprint for the way next-generation sequencing technologies can be used for the identification of breed-specific SNPs, as well as evidence that these SNPs may be a powerful tool for breed assignment and traceability of animal products to their breeds of origin.  相似文献   

14.
Simple sequence repeat (SSR) markers were developed and characterized for Neolitsea sericea (Bl.) Koidz. (Lauraceae). Out of 196 designed primer pairs, a total of 144 pairs showed amplification, of which 44 had clear and stable chromatograms. Polymorphism of these 44 loci was tested using 32 individuals sampled from a single population of N. sericea. The number of alleles and the polymorphism information content varied from 3 to 12 and 0.271 to 0.853, respectively. A significant departure from the Hardy‐Weinberg equilibrium was observed in one of the 44 loci. These SSR markers are useful for population genetic studies and parentage analysis in N. sericea, which is one of the most common evergreen species in coastal Pinus thunbergii forests in central‐western Japan.  相似文献   

15.
Restriction site‐associated DNA sequencing (RAD‐seq) is one of the most effective high‐throughput sequencing technologies for SNP development and utilization and has been applied to studying the origin and evolution of various species. The domestic Bactrian camels play an important role in economic trade and cultural construction. They are precious species resources and indispensable animals in China's agricultural production. Recently, the rapid development of modern transportation and agriculture, and the deterioration of the environment have led to a sharp decline in the number of camels. Although there have been some reports on the evolution history of the domestic Bactrian camel in China, the origin, evolutionary relationship, and genetic diversity of the camels are unclear due to the limitations of sample size and sequencing technology. Therefore, 47 samples of seven domestic Bactrian camel species from four regions (Inner Mongolia, Gansu, Qinghai, and Xinjiang) were prepared for RAD‐seq analysis to study the evolutionary relationship and genetic diversity. In addition, seven domestic Bactrian camel species are located in different ecological zones, forming different characteristics and having potential development value. A total of 6,487,849 SNPs were genotyped. On the one hand, the filtered SNP information was used to conduct polymorphism mapping construction, LD attenuation analysis, and nucleotide diversity analysis. The results showed that the number of SNPs in Dongjiang camel was the highest, the LD coefficient decayed the fastest, and the nucleotide diversity was the highest. It indicates that Dongjiang camel has the highest genetic diversity. On the other hand, the filtered SNPs information was used to construct the phylogenetic tree, and FST analysis, inbreeding coefficient analysis, principal component analysis, and population structure analysis were carried out. The results showed that Nanjiang camel and Beijiang camels grouped together, and the other five Bactrian camel populations gathered into another branch. It may be because the mountains in the northern part of Xinjiang and the desert in the middle isolate the two groups from the other five groups.  相似文献   

16.
Although the overall structure of the chloroplast genome is generally conserved, several sequence variations have been identified that are valuable for plant population and evolutionary studies. Here, we constructed a chloroplast variation map of 30 landrace rice strains of Korean origin, using the Oryza rufipogon chloroplast genome (GenBank: NC_017835 ) as a reference. Differential distribution of single‐nucleotide polymorphisms and INDELs across the rice chloroplast genome is suggestive of a region‐specific variation. Population structure clustering revealed the existence of two clear subgroups (indica and japonica) and an admixture group (aus). Phylogenetic analysis of the 30 landrace rice strains and six rice chloroplast references suggested and supported independent evolution of O. sativa indica and japonica. Interestingly, two aus type accessions, which were thought to be indica type, shared a closer relationship with the japonica type. One hypothesis is that ‘Korean aus’ was intentionally introduced and may have obtained japonica chloroplasts during cultivation. We also calculated the nucleotide diversity of 30 accessions and compared the results to six rice chloroplast references. These data demonstrated that although nucleotide diversity is low in all strains tested, aus and indica have a higher nucleotide diversity than japonica.  相似文献   

17.
Whole‐genome duplications have occurred in the recent ancestors of many plants, fish and amphibians. Signals of these whole‐genome duplications still exist in the form of paralogous loci. Recent advances have allowed reliable identification of paralogs in genotyping‐by‐sequencing (GBS) data such as that generated from restriction‐site‐associated DNA sequencing (RADSeq); however, excluding paralogs from analyses is still routine due to difficulties in genotyping. This exclusion of paralogs may filter a large fraction of loci, including loci that may be adaptively important or informative for population genetic analyses. We present a maximum‐likelihood method for inferring allele dosage in paralogs and assess its accuracy using simulated GBS, empirical RADSeq and amplicon sequencing data from Chinook salmon. We accurately infer allele dosage for some paralogs from a RADSeq data set and show how accuracy is dependent upon both read depth and allele frequency. The amplicon sequencing data set, using RADSeq‐derived markers, achieved sufficient depth to infer allele dosage for all paralogs. This study demonstrates that RADSeq locus discovery combined with amplicon sequencing of targeted loci is an effective method for incorporating paralogs into population genetic analyses.  相似文献   

18.
We isolated and characterized microsatellite loci in Viola mirabilis (Violaceae), an endangered species from South Korea. Twenty‐three polymorphic microsatellite loci were developed and tested in Korean, Chinese and Japanese populations. The number of alleles per locus varied from two to eight. The observed and expected heterozygosities within the three populations were 0.000–0.625 and 0.469–0.695, respectively. A total of six loci in the Korean population, one locus in the Chinese population and seven loci in the Japanese population deviated from Hardy–Weinberg equilibrium. We expect that these newly developed microsatellite markers will contribute to understanding the phylogeography and population genetics of V. mirabilis, which will aid in developing conservation strategies for this species.  相似文献   

19.
Knowledge of kin relationships between members of wild animal populations has broad application in ecology and evolution research by allowing the investigation of dispersal dynamics, mating systems, inbreeding avoidance, kin recognition, and kin selection as well as aiding the management of endangered populations. However, the assessment of kinship among members of wild animal populations is difficult in the absence of detailed multigenerational pedigrees. Here, we first review the distinction between genetic relatedness and kinship derived from pedigrees and how this makes the identification of kin using genetic data inherently challenging. We then describe useful approaches to kinship classification, such as parentage analysis and sibship reconstruction, and explain how the combined use of marker systems with biparental and uniparental inheritance, demographic information, likelihood analyses, relatedness coefficients, and estimation of misclassification rates can yield reliable classifications of kinship in groups with complex kin structures. We outline alternative approaches for cases in which explicit knowledge of dyadic kinship is not necessary, but indirect inferences about kinship on a group‐ or population‐wide scale suffice, such as whether more highly related dyads are in closer spatial proximity. Although analysis of highly variable microsatellite loci is still the dominant approach for studies on wild populations, we describe how the long‐awaited use of large‐scale single‐nucleotide polymorphism and sequencing data derived from noninvasive low‐quality samples may eventually lead to highly accurate assessments of varying degrees of kinship in wild populations.  相似文献   

20.
Zhang GX  Wang ZG  Chen WS  Wu CX  Han X  Chang H  Zan LS  Li RL  Wang JH  Song WT  Xu GF  Yang HJ  Luo YF 《Animal genetics》2007,38(6):550-559
Twenty-seven domesticated yellow cattle breeds of China and three introduced cattle breeds were analysed by means of 30 microsatellite markers to determine the level of genetic variation within and among populations as well as the population structure. In all, 480 microsatellite alleles were observed across the 30 breeds with the mean number of alleles per locus of 9.093 for native breeds and 6.885 for the three introduced breeds. Mean F -statistics (0.08) for Chinese native cattle breeds implied that 92% of the total genetic variation was from genetic differentiation within each breed and 8% of the genetic variation existed among breeds. A phylogenetic tree was constructed based on Nei's genetic distances, and three clusters were obtained. According to the tree, the three introduced breeds were distinct from the 27 native breeds. The indigenous cattle breeds were divided into two clusters, one cluster including five humpless breeds and the other cluster containing 22 humped breeds. This study identifies multiple origins of yellow cattle of China from Bos taurus and Bos indicus . Furthermore, population structure analysis implies that there are possibly five independent original domestications for yellow cattle in China. Four of five origins were four different Bos indicus types, mainly in areas of the Chang Jiang, the Zhu Jiang River basin, the Yellow River and the Huai River basin. The other origin was for Bos taurus type of Mongolian descent, mainly located in Northwestern China, the Mongolian plateau and Northeastern China or north of the Great Wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号