首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Genomics》2022,114(6):110515
Piao chicken, a Chinese indigenous rumpless chicken breed, lacks pygostyle, caudal vertebra, uropygial gland and tail feathers. The rumplessness in Piao chicken presents an autosomal dominant inheritance pattern. However, the molecular genetic mechanisms underlying the rumplessness in Piao chicken remains unclear. In this study, whole-genome resequencing was performed for 146 individuals from 10 chicken breeds, including 9 tailed chicken breeds and Piao rumpless breed. Tailbone CT scan for Piao chickens and WL chickens, revealed that some Piao chicken tails were normal in number, and for a few Piao chickens tail length and tail bone numbers were between the rumpless and the normal tailed chickens. The results showed that the rumpless phenotype has not been completely fixed in Piao chicken breed. Using selection signature analysis and structural variation detection, we found a 4174 bp deletion located in the upstream region of IRX1 gene on chromosome 2 related to rumpless phenotype. Structural variation genotyping showed that the deletion was present in all 32 rumpless Piao chickens (del/del, wild/del) and absent from all 112 tailed chickens included in the dataset for the other 9 breeds and 2 tailed Piao chickens (wild/wild). In summary, all rumpless Piao chickens tested here carry this deletion mutation, to show a complete linkage association with rumplessness trait. We suggested that the 4174 bp deletion could be causative for rumpless phenotype in Piao chicken since this is the only mutation to show the complete linkage disequilibrium with rumplessness on whole genome level across all of 146 chickens from the 10 breeds. This study could facilitate a better understanding of the genetic characteristics of Piao chicken.  相似文献   

2.
A disorder of sex development (DSD) in dogs with female sex chromosomes (78, XX), a lack of the SRY gene and the presence of testes or ovotestes is commonly diagnosed in numerous breeds. The molecular background of DSD is not fully recognized but has been linked to the copy number variation in the region harboring the SOX9 gene. We applied a genome‐wide association study and targeted next‐generation sequencing techniques to compare DSD and normal female dogs. The genome‐wide association study did not indicate a significant chromosome region. Targeted next‐generation sequencing of a 1.5‐Mb region on canine chromosome 9 harboring the SOX9 gene revealed two putatively DSD‐associated copy number variations 355 kb upstream and 691 kb downstream of SOX9, four blocks of low polymorphism and two blocks of an elevated heterozygosity. An initial next‐generation sequencing analysis showed an association with two SNPs, but validation in larger cohorts did not confirm this result. We identified a large homologous fragment (over 243.8 kb), named hfMAGI2, located upstream of SOX9, that overlaps a known copy number variation region. It shows a high sequence similarity with the 5′ flanking region of the MAGI2 gene located on canine chromosome 18 that encodes a protein involved in ovary formation during early embryonic development. Our study showed that the identified copy number variation region located upstream of the SOX9 gene contains potential regulatory sequences (long non‐coding RNA and hfMAGI2) and led to the assumption that a multiplication of this element may alter expression of the SOX9 gene, triggering the DSD phenotype.  相似文献   

3.
Genomic regions associated with coat color and pigmented areas of the head were identified for Fleckvieh (dual‐purpose Simmental), a red‐spotted and white‐headed cattle breed. Coat color was measured with a chromameter, implementing the CIELAB color space and resulting in numerical representation of lightness, color intensity, red/green and blue/yellow color components, rather than subjective classification. Single marker regression analyses with fixed effects of the sex and barn were applied, and significant regions were determined with the local false discovery rate methodology. The PMEL and ERBB3 genes on chromosome 5 were in the most significant region for the color measurements. In addition to the blue/yellow color component and color intensity, the AP3B2 gene on chromosome 21 was identified. Its function was confirmed for similar traits in a range of model species. The KIT gene on chromosome 6 was found to be strongly associated with the inhibition of circum‐ocular pigmentation and pigmented spots on the cheek.  相似文献   

4.
5.
Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto, from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single‐molecule real‐time sequencing). Rysto was found to encode a nucleotide‐binding leucine‐rich repeat (NLR) protein with an N‐terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto‐dependent extreme resistance was temperature‐independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY‐resistant cultivars of potato and other Solanaceae crops.  相似文献   

6.
7.
The POLL locus has been mapped to the centromeric region of bovine chromosome 1 (BTA1) in both taurine breeds and taurine–indicine crosses in an interval of approximately 1 Mb. It has not yet been mapped in pure‐bred zebu cattle. Despite several efforts, neither causative mutations in candidate genes nor a singular diagnostic DNA marker has been identified. In this study, we genotyped a total of 68 Brahman cattle and 20 Hereford cattle informative for the POLL locus for 33 DNA microsatellites, 16 of which we identified de novo from the bovine genome sequence, mapping the POLL locus to the region of the genes IFNAR2 and SYNJ1. The 303‐bp allele of the new microsatellite, CSAFG29, showed strong association with the POLL allele. We then genotyped 855 Brahman cattle for CSAFG29 and confirmed the association between the 303‐bp allele and POLL. To determine whether the same association was found in taurine breeds, we genotyped 334 animals of the Angus, Hereford and Limousin breeds and 376 animals of the Brangus, Droughtmaster and Santa Gertrudis composite taurine–zebu breeds. The association between the 303‐bp allele and POLL was confirmed in these breeds; however, an additional allele (305 bp) was also associated but not fully predictive of POLL. Across the data, CSAFG29 was in sufficient linkage disequilibrium to the POLL allele in Australian Brahman cattle that it could potentially be used as a diagnostic marker in that breed, but this may not be the case in other breeds. Further, we provide confirmatory evidence that the scur phenotype generally occurs in animals that are heterozygous for the POLL allele.  相似文献   

8.
Trichomes originate from the epidermal cells of nearly all terrestrial plants, which are specialized unicellular or multicellular structures. Although the molecular mechanism regulating unicellular trichome formation has been extensively characterized, most of the genes essential for multicellular trichome formation remain unknown. In this study, we identified an associated locus on the long arm of chromosome 10 using a genome‐wide association study (GWAS) on type‐I trichomes of 180 diverse Solanum lycopersicum (tomato) accessions. Using map‐based cloning we then cloned the key gene controlling the initiation of this type of trichome, named Hair (H), which encodes a single C2H2 zinc‐finger protein. Transgenic experiments showed that hair‐absent phenotype is caused by the deletion of the entire coding region of H. We identified three alleles of H containing several missense mutations and a nucleotide deletion, which result in amino acid substitutions and a reading frame shift, respectively. In addition, knockdown of H or Woolly (Wo) represses the formation of type‐I trichomes, suggesting that both regulators may function as a heterodimer. Direct protein–protein interaction between them was further detected through pull‐down and yeast two‐hybrid assays. In addition, ectopic expression of H in Nicotiana tabacum (tobacco) and expression of its homologs from Capsicum annuum (pepper) and tobacco in tomato can trigger trichome formation. Taken together, these findings suggest that the H gene may be functionally conserved in multicellular trichome formation in Solanaceae species.  相似文献   

9.
Recently, Schroeder et al. (2010, Ibis 152: 368–377) suggested that intronic variation in the CHD1‐Z gene of Black‐tailed Godwits breeding in southwest Friesland, The Netherlands, correlated with fitness components. Here we re‐examine this surprising result using an expanded dataset (2088 birds sampled from 2004 to 2010 vs. 284 birds from 2004 to 2007). We find that the presence of the Z* allele (9% of the birds) is not associated with breeding habitat type, egg size, adult survival, adult body mass or adult body condition. The results presented here, when used in synergy with the previously reported results by Schroeder et al., suggest that there might be a tendency towards female adults with the Z* allele laying earlier clutches than adult females without the Z* allele. The occurrence of the Z* allele was also associated with a higher chick body mass and return rate. Chicks with the Z* allele that had hatched early in the breeding season were heavier at birth than chicks without the Z* allele and chicks with the Z* allele that had hatched late. Collectively, the results suggest that variation in the CHD1‐Z gene may indeed have arisen as a byproduct of selection acting on females during the egg fase and on chicks during the rearing stages of the reproductive cycle.  相似文献   

10.
Footrot is one of the most important causes of lameness in global sheep populations and is characterized by a bacterial infection of the interdigital skin. As a multifactorial disease, its clinical representation depends not only on pathogen factors and environmental components but also on the individual resistance/susceptibility of the host. A genetic component has been shown in previous studies; however, so far no causative genetic variant influencing the risk of developing footrot has been identified. In this study, we genotyped 373 Swiss White Alpine sheep, using the ovine high‐density 600k SNP chip, in order to run a DNA‐based comparison of individuals with known clinical footrot status. We performed a case–control genome‐wide association study, which revealed a genome‐wide significant association for SNP rs418747104 on ovine chromosome 2 at 81.2 Mb. The three best associated SNP markers were located at the MPDZ gene, which codes for the multiple PDZ domain crumbs cell polarity complex component protein, also known as multi‐PDZ domain protein 1 (MUPP1). This protein is possibly involved in maintaining the barrier function and integrity of tight junctions. Therefore, we speculate that individuals carrying MPDZ variants may differ in their footrot resistance/susceptibility due to modified horn and interdigital skin integrity. In conclusion, our study reveals that MPDZ might represent a functional candidate gene, and further research is needed to explore its role in footrot affected sheep.  相似文献   

11.
Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C‐RDP‐II), which contains 584 rice accessions and are genotyped with 700 000 single‐nucleotide polymorphism (SNP) markers. The C‐RDP‐II accessions were inoculated with three blast strains collected from different rice‐growing regions in China. Genome‐wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide‐binding site leucine‐rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up‐regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR‐Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non‐strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.  相似文献   

12.
Luo C  Shen X  Rao Y  Xu H  Tang J  Sun L  Nie Q  Zhang X 《Molecular biology reports》2012,39(5):6283-6288
One duplicated segment on chicken Z chromosome is a causal mutation to the late-feathering phenotype. However, understanding biological process of the late-feathering formation is also of interest to chicken breeding and feather development theory. One hundred and thirty-seven valid single nucleotide polymorphisms (SNPs) from an SNP database were used to perform an association study of the Z chromosome in Xinghua chickens. Two SNPs, which were respectively on 9607480 bp and 10607757 bp, were significantly associated with feathering phenotypes. This result indicated the causal mutation of the late-feathering formation in Xinghua chickens was consistent with the previous report which showed the late-feathering locus ranged 9966364–10142688 bp on Z chromosome. Microarray expressions were implemented for six 1-day-old female Xinghua chicks. Compared to the early-feathering chicks, there were 249 and 83 upregulated and downregulated known genes in the late-feathering chicks. Forty-one genes were expressed in late-feathering chicks, but not in early-feathering ones. At least 14 significantly differentially expressed genes were directly related to keratin. In the region of the sex-linked feathering gene, only prolactin receptor (PRLR) gene was a significantly differentially expressed gene. Expression of PRLR in late-feathering chicks was 1.78-fold as that in early-feathering chicks. Late-feathering Wenchang chicks also had higher expression level of PRLR than early-feathering ones. This study suggested that increasing PRLR expression that resulted from the special variant on chicken Z chromosome caused the late-feathering phenotype.  相似文献   

13.
Solar lentigines are a common feature of sun‐induced skin ageing. Little is known, however, about the genetic factors contributing to their development. In this genome‐wide association study, we aimed to identify genetic loci associated with solar lentigines on the face in 502 middle‐aged French women. Nine SNPs, gathered in two independent blocks on chromosome 6, exhibited a false discovery rate below 25% when looking for associations with the facial lentigine score. The first block, in the 6p22 region, corresponded to intergenic SNPs and also exhibited a significant association with forehead lentigines (P = 1.37 × 10?8). The second block, within the 6p21 HLA region, was associated with decreased HLA‐C expression according to several eQTL databases. Interestingly, these SNPs were also in high linkage disequilibrium with the HLA‐C*0701 allele (r2 = 0.95). We replicated an association recently found by GWAS in the IRF4 gene. Finally, a complementary study on 44 selected candidate SNPs revealed novel associations in the MITF gene. Overall, our results point to several mechanisms involved in the severity of facial lentigines, including HLA/immunity and the melanogenesis pathway.  相似文献   

14.
Casertana is an endangered autochthonous pig breed (raised in south‐central Italy) that is considered to be the descendant of the influential Neapolitan pig population that was used to improve British breeds in the 19th century. Casertana pigs are characterized by a typical, almost complete, hairless phenotype, even though a few Casertana pigs are normal haired. In this work, using Illumina PorcineSNP60 BeadChip data, we carried out a genome‐wide association study and an FST analysis with this breed by comparing animals showing the classical hairless phenotype (= 81) versus pigs classified as haired (= 15). Combining the results obtained with the two approaches, we identified two significant regions: one on porcine chromosome (SSC) 7 and one on SSC15. The SSC7 region contains the forkhead box N3 (FOXN3) gene, the most plausible candidate gene of this region, considering that mutations in another gene of the same family (forkhead box N1; Foxn1 or FOXN1) are responsible for the nude locus in rodents and alopecia in humans. Another potential candidate gene, rho guanine nucleotide exchange factor 10 (ARHGEF10), is located in the SSC15 region. FOXN3 and ARHGEF10 have been detected as differentially expressed in androgenetic and senescent alopecia respectively. This study on an autochthonous pig breed contributes to shed some light on novel genes potentially involved in hair development and growth and demonstrates that local animal breeds can be valuable genetic resources for disclosing genetic factors affecting unique traits, taking advantage of phenotype variability segregating in small populations.  相似文献   

15.
Genetic improvement is important for the poultry industry, contributing to increased efficiency of meat production and quality. Because breast muscle is the most valuable part of the chicken carcass, knowledge of polymorphisms influencing this trait can help breeding programs. Therefore, the complete genome of 18 chickens from two different experimental lines (broiler and layer) from EMBRAPA was sequenced, and SNPs and INDELs were detected in a QTL region for breast muscle deposition on chicken chromosome 2 between microsatellite markers MCW0185 and MCW0264 (105 849–112 649 kb). Initially, 94 674 unique SNPs and 10 448 unique INDELs were identified in the target region. After quality filtration, 77% of the SNPs (85 765) and 60% of the INDELs (7828) were retained. The studied region contains 66 genes, and functional annotation of the filtered variants identified 517 SNPs and three INDELs in exonic regions. Of these, 357 SNPs were classified as synonymous, 153 as non‐synonymous, three as stopgain, four INDELs as frameshift and three INDELs as non‐frameshift. These exonic mutations were identified in 37 of the 66 genes from the target region, three of which are related to muscle development (DTNA, RB1CC1 and MOS). Fifteen non‐tolerated SNPs were detected in several genes (MEP1B, PRKDC, NSMAF, TRAPPC8, SDR16C5, CHD7, ST18 and RB1CC1). These loss‐of‐function and exonic variants present in genes related to muscle development can be considered candidate variants for further studies in chickens. Further association studies should be performed with these candidate mutations as should validation in commercial populations to allow a better explanation of QTL effects.  相似文献   

16.
17.
Host–parasite coevolution is predicted to favour genetic diversity and the underlying mechanisms (e.g. sexual reproduction and, more generally, genetic exchange), because diversity enhances the antagonists' potential for rapid adaptation. To date, this prediction has mainly been tested and confirmed for the host. It should similarly apply to the parasite. Indeed, our previous work demonstrated that experimental coevolution between the nematode Caenorhabditis elegans and its microparasite Bacillus thuringiensis selects for genetic diversity in both antagonists. For the parasite, the previous analysis was based on plasmid‐encoded toxin gene markers. Thus, it was restricted to a very small part of the bacterial genome and did not cover the main chromosome, which harbours a large variety of virulence factors. Here, we present new data for chromosomal gene markers of B. thuringiensis and combine this information with the previous results on plasmid‐encoded toxins. Our new results demonstrate that, in comparison with the control treatment, coevolution with a host similarly leads to higher levels of genetic diversity in the bacterial chromosome, thus indicating the relevance of chromosomal genes for coevolution. Furthermore, the frequency of toxin gene gain is significantly elevated during coevolution, highlighting the importance of horizontal gene transfer as a diversity‐generating mechanism. In conclusion, our study emphasizes the strong influence of antagonistic coevolution on parasite genetic diversity and gene exchange.  相似文献   

18.
We explored the involvement of genomic copy number variants (CNVs) in susceptibility to recurrent airway obstruction (RAO), or heaves—an asthmalike inflammatory disease in horses. Analysis of 16 RAO‐susceptible (cases) and six RAO‐resistant (control) horses on a custom‐made whole‐genome 400K equine tiling array identified 245 CNV regions (CNVRs), 197 previously known and 48 new, distributed on all horse autosomes and the X chromosome. Among the new CNVRs, 30 were exclusively found in RAO cases and were further analyzed by quantitative PCR, including additional cases and controls. Suggestive association (= 0.03; corrected = 0.06) was found between RAO and a loss on chromosome 5 involving NME7, a gene necessary for ciliary functions in lungs and involved in primary ciliary dyskinesia in humans. The CNVR could be a potential marker for RAO susceptibility but needs further study in additional RAO cohorts. Other CNVRs were not associated with RAO, although several involved genes of interest, such as SPI2/SERPINA1 from the serpin gene family, which are associated with chronic obstructive pulmonary disease and asthma in humans. The SPI2/SERPINA1 CNVR showed striking variation among horses, but it was not significantly different between RAO cases and controls. The findings provide baseline information on the relationship between CNVs and RAO susceptibility. Discovery of new CNVs and the use of a larger population of RAO‐affected and control horses are needed to shed more light on their significance in modulating this complex and heterogeneous disease.  相似文献   

19.
20.
Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome‐wide markers to investigate the diversification of the Reunion grey white‐eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping‐by‐sequencing and pooled RAD‐seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z‐linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号