首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of high throughput genotyping techniques has facilitated the identification of selection signatures of pigs. The detection of genomic selection signals in a population subjected to differential selection pressures may provide insights into the genes associated with economically and biologically important traits. To identify genomic regions under selection, we genotyped 488 Duroc (D) pigs and 155 D × Korean native pigs (DKNPs) using the Porcine SNP70K BeadChip. By applying the FST and extended haplotype homozygosity (EHH‐Rsb) methods, we detected genes under directional selection associated with growth/stature (DOCK7, PLCB4, HS2ST1, FBP2 and TG), carcass and meat quality (TG, COL14A1, FBXO5, NR3C1, SNX7, ARHGAP26 and DPYD), number of teats (LOC100153159 and LRRC1), pigmentation (MME) and ear morphology (SOX5), which are all mostly near or at fixation. These results could be a basis for investigating the underlying mutations associated with observed phenotypic variation. Validation using genome‐wide association analysis would also facilitate the inclusion of some of these markers in genetic evaluation programs.  相似文献   

2.
3.
The extent and pattern of linkage disequilibrium (LD) between closely spaced markers contain information about population history, including past population size and selection history. Selection signatures can be identified by comparing the LD surrounding a putative selected allele at a locus to the putative non-selected allele. In livestock populations, locations of selection signatures identified in this way should be correlated with QTL affecting production traits, as the populations have been under strong artificial selection for these traits. We used a dense SNP map of bovine chromosome 6 to characterize the pattern of LD on this chromosome in Norwegian Red cattle, a breed which has been strongly selected for milk production. The pattern of LD was generally consistent with strong selection in regions containing QTL affecting milk production traits, including a strong selection signature in a region containing a mutation known to affect milk production. The results demonstrate that in livestock populations, the origin of selection signatures will often be QTL for livestock production traits, and illustrate the value of selection signatures in uncovering new mutations with potential effects on quantitative traits.  相似文献   

4.
5.
Breeding indigenous African taurine cattle tolerant to trypanosomosis is a straightforward approach to control costs generated by this disease. A recent study identified quantitative trait loci (QTL) underlying trypanotolerance traits in experimental crosses between tolerant N'Dama and susceptible Boran zebu cattle. As trypanotolerance is thought to result from local adaptation of indigenous cattle breeds, we propose an alternative and complementary approach to study the genetic architecture of this trait, based on the identification of selection signatures within QTL or candidate genes. A panel of 92 microsatellite markers was genotyped on 509 cattle belonging to four West African trypanotolerant taurine breeds and 10 trypanosusceptible European or African cattle breeds. Some of these markers were located within previously identified QTL regions or candidate genes, while others were chosen in regions assumed to be neutral. A detailed analysis of the genetic structure of these different breeds was carried out to confirm a priori grouping of populations based on previous data. Tests based on the comparison of the observed heterozygosities and variances in microsatellite allelic size among trypanotolerant and trypanosusceptible breeds led to the identification of two significantly less variable microsatellite markers. BM4440, one of these two outlier loci, is located within the confidence interval of a previously described QTL underlying a trypanotolerance-related trait.
Detection of selection signatures appears to be a straightforward approach for unravelling the molecular determinism of trypanosomosis pathogenesis. We expect that a whole genome approach will help confirm these results and achieve a higher resolving power.  相似文献   

6.
利用高密度SNP检测不同猪品种间X染色体选择信号   总被引:4,自引:0,他引:4  
马云龙  张勤  丁向东 《遗传》2012,(10):33-42
在家猪的培育过程中,许多重要的经济性状受到过高强度的人工选择,高密度SNP标记为通过选择信号检测追踪这些性状经历的选择提供了可能,并能根据选择信号利用生物信息学寻找到与选择相关的基因。X染色体由于其特殊性,在传统的遗传分析中许多针对常染色体的方法往往不适用,需要采取特殊的方法,选择信号检测可以作为一种行之有效的方法对X染色体进行分析。文章利用长白、松辽黑猪和大白3个猪品种,通过品种间选择信号检测方法 XP-EHH,利用高密度SNP标记对X染色体进行选择信号检测,并通过生物信息学分析寻找选择信号区域内重要基因。在长白、松辽黑猪和大白3个品种中分别检测出29、13和15个选择信号区域,每个选择信号区域平均包含3.59、4.92、4.07个SNPs,长白和松辽黑猪、长白和大白有部分重叠选择信号区域,大白和松辽黑猪没有发现重叠选择信号区域。生物信息学分析发现各品种选择信号区域内有与繁殖、免疫等性状相关基因,其中部分在猪中尚未见报道,可作为研究猪相关性状的重要候选基因。  相似文献   

7.
Pigs have experienced dramatic selection due to domestication, which has led to many different phenotypes when compared to their wild counterparts, especially in the last several decades. Currently, genome‐wide scans in both cattle and humans showing positive selection footprints have been investigated. However, few studies have focused on porcine selection footprints, particularly on a genome‐wide scale. Surveying for selection footprints across porcine genomes can be quite valuable for revealing the genetic mechanisms of phenotypic diversity. Here, we employed a medium sequencing depth (5–20x/site per individual, on average) approach called genotyping by genome reducing and sequencing (GGRS) to detect genome‐wide selection signatures of two domestic pig breeds (Yorkshire and Landrace) that have been under intensive selection for traits of muscle development, growth and behavior. The relative extended haplotype homozygosity test, which identifies selection signatures by measuring the characteristics of haplotypes’ frequency distribution within a single population, was also applied to identify potential positively selected regions. As a result, signatures of positive selection were found in each breed. However, most selection signatures were population specific and related to genomic regions containing genes for biological categories including brain development, metabolism, growth and olfaction. Furthermore, the result of the gene set enrichment analysis indicated that selected regions of the two breeds presented a different over‐representation of genes in the Gene Ontology annotations and Kyoto Encyclopedia of Genes and Genomes pathways. Our results revealed a genome‐wide map of selection footprints in pigs and may help us better understand the mechanisms of selection in pig breeding.  相似文献   

8.
Genome-wide methods offer a powerful approach to detect signatures of drug selection. However, limited availability of suitable reference genomes and the difficulty of obtaining field populations with well-defined, distinct drug treatment histories mean there is little information on the signatures of selection in parasitic nematodes and on how best to detect them. This study addresses these knowledge gaps by using field populations of Haemonchus contortus with well-defined benzimidazole treatment histories, leveraging a recently completed chromosomal-scale reference genome assembly. We generated a panel of 49,393 genomic markers to genotype 20 individual adult worms from each of four H. contortus populations: two from closed sheep flocks with an approximate 20 year history of frequent benzimidazole treatment, and two populations with a history of little or no treatment. Sampling occurred in the same geographical region to limit genetic differentiation and maximise the detection sensitivity. A clear signature of selection was detected on chromosome I, centred on the isotype-1 β-tubulin gene. Two additional, but weaker, signatures of selection were detected; one near the middle of chromosome I spanning 3.75 Mbp and 259 annotated genes, and one on chromosome II spanning a region of 3.3 Mbp and 206 annotated genes, including the isotype-2 β-tubulin locus. We also assessed how sensitivity was impacted by sequencing depth, worm number, and pooled versus individual worm sequence data. This study provides the first known direct genome-wide evidence for any parasitic nematode, that the isotype-1 β-tubulin gene is quantitatively the single most important benzimidazole resistance locus. It also identified two additional genomic regions that likely contain benzimidazole resistance loci of secondary importance. This study provides an experimental framework to maximise the power of genome-wide approaches to detect signatures of selection driven by anthelmintic drug treatments in field populations of parasitic nematodes.  相似文献   

9.
Domestication in the near eastern region had a major impact on the gene pool of humpless taurine cattle (Bos taurus). As a result of subsequent natural and artificial selection, hundreds of different breeds have evolved, displaying a broad range of phenotypic traits. Here, 10 Eurasian B. taurus breeds from different biogeographic and production conditions, which exhibit different demographic histories and have been under artificial selection at various intensities, were investigated using the Illumina BovineSNP50 panel to understand their genetic diversity and population structure. In addition, we scanned genomes from eight breeds for signatures of diversifying selection. Our population structure analysis indicated six distinct breed groups, the most divergent being the Yakutian cattle from Siberia. Selection signals were shared (experimental P‐value < 0.01) with more than four breeds on chromosomes 6, 7, 13, 16 and 22. The strongest selection signals in the Yakutian cattle were found on chromosomes 7 and 21, where a miRNA gene and genes related to immune system processes are respectively located. In general, genomic regions indicating selection overlapped with known QTL associated with milk production (e.g. on chromosome 19), reproduction (e.g. on chromosome 24) and meat quality (e.g. on chromosome 7). The selection map created in this study shows that native cattle breeds and their genetic resources represent unique material for future breeding.  相似文献   

10.
11.
Host specialization is a key process in ecological divergence and speciation of plant‐associated fungi. The underlying determinants of host specialization are generally poorly understood, especially in endophytes, which constitute one of the most abundant components of the plant microbiome. We addressed the genetic basis of host specialization in two sympatric subspecies of grass‐endophytic fungi from the Epichloë typhina complex: subsp. typhina and clarkii. The life cycle of these fungi entails unrestricted dispersal of gametes and sexual reproduction before infection of a new host, implying that the host imposes a selective barrier on viability of the progeny. We aimed to detect genes under divergent selection between subspecies, experiencing restricted gene flow due to adaptation to different hosts. Using pooled whole‐genome sequencing data, we combined FST and DXY population statistics in genome scans and detected 57 outlier genes showing strong differentiation between the two subspecies. Genomewide analyses of nucleotide diversity (π), Tajima's D and dN/dS ratios indicated that these genes have evolved under positive selection. Genes encoding secreted proteins were enriched among the genes showing evidence of positive selection, suggesting that molecular plant–fungus interactions are strong drivers of endophyte divergence. We focused on five genes encoding secreted proteins, which were further sequenced in 28 additional isolates collected across Europe to assess genetic variation in a larger sample size. Signature of positive selection in these isolates and putative identification of pathogenic function supports our findings that these genes represent strong candidates for host specialization determinants in Epichloë endophytes. Our results highlight the role of secreted proteins as key determinants of host specialization.  相似文献   

12.
Population translocations occur for a variety of reasons, from displacement due to climate change to human‐induced transfers. Such actions have adverse effects on genetic variation and understanding their microevolutionary consequences requires monitoring. Here, we return to an experimental release of brown trout (Salmo trutta) in order to monitor the genomic effects of population translocations. In 1979, fish from each of two genetically (F ST = 0.16) and ecologically separate populations were simultaneously released, at one point in time, to a lake system previously void of brown trout. Here, whole‐genome sequencing of pooled DNA (Pool‐seq) is used to characterize diversity within and divergence between the introduced populations and fish inhabiting two lakes downstream of the release sites, sampled 30 years later (c. 5 generations). Present results suggest that while extensive hybridization has occurred, the two introduced populations are unequally represented in the lakes downstream of the release sites. One population, which is ecologically resident in its original habitat, mainly contributes to the lake closest to the release site. The other population, migratory in its natal habitat, is genetically more represented in the lake further downstream. Genomic regions putatively under directional selection in the new habitat are identified, where allele frequencies in both established populations are more similar to the introduced population stemming from a resident population than the migratory one. Results suggest that the microevolutionary consequences of population translocations, for example, hybridization and adaptation, can be rapid and that Pool‐seq can be used as an initial tool to monitor genome‐wide effects.  相似文献   

13.
Modern commercial chickens have been bred for one of two specific purposes: meat production (broilers) or egg production (layers). This has led to large phenotypic changes, so that the genomic signatures of selection may be detectable using statistical techniques. Genetic differentiation between nine distinct broiler lines was calculated using Weir and Cockerham's pairwise FST estimator for 11 003 genome‐wide markers to identify regions showing evidence of differential selection across lines. Differentiation measures were averaged into overlapping sliding windows for each line, and a permutation approach was used to determine the significance of each window. A total of 51 regions were found to show significant differentiation between the lines. Several lines were consistently found to share significant regions, suggesting that the pattern of line divergence is related to selection for broiler traits. The majority of the 51 regions contain QTL relating to broiler traits, but only five of them were found to be significantly enriched for broiler QTL, including a region on chromosome 27 containing 39 broiler QTL and 114 genes. Additionally, a number of these regions have been identified by other selection mapping studies. This study has identified a large number of potential selection signatures, and further tests with higher‐density marker data may narrow these regions down to individual genes.  相似文献   

14.
The Eastern Barred Bandicoot Perameles gunnii has declined in abundance within mainland south-eastern Australia, to a relict wild population of less than 100 individuals in Hamilton, Victoria. It is more common, but is also declining in Tasmania. Genomic DN A variability was compared within and between surviving populations of P. gunnii using variable number of tandem repeat (VNTR) markers in one of two ways. First, average percentage differences (APDs) were determined between profiles for two VNTR probe—endonuclease combinations. Secondly, because one of these combinations revealed two multiallelic VNTR loci, genotypes were assigned and analysed for homogeneity of allele frequencies among subpopulations, for deviation of heterozygosity from Hardy-Weinberg equilibrium within populations and for genetic structuring among individuals from different subpopulations. The results of both the APD and defined locus approaches showed consistent trends within and between populations. Genetic variability was higher among mainland P. gunnii than in Tasmanian populations (higher APDs, number of alleles, and heterozygosity at one locus), despite the known decline and subdivision of the Hamilton population. Eleven per cent of the variability detected in Hamilton was attributed to genetic differentiation between east and west subdivisions of the population. Departure from random mating indicating local inbreeding within collecting localities was evident for one locus in both north and south Tasmania, particularly at one locality. AH alleles at both loci were unique to either Hamilton or Tasmanian P. gunnii. The initial captive colony contains high heterozygosity for these loci. It is concluded that VNTR markers can be of benefit for use in studies of population differentiation and for conservation management.  相似文献   

15.
Identifying the factors that cause reproductive isolation and their relative importance in species divergence is crucial to our understanding of speciation processes. In most species, natural selection is commonly considered to play a large role in driving speciation. Based on whole genome re-sequencing data from 27 Populus alba and 28 Populus adenopoda individuals, we explored the factors related to reproductive isolation of these two closely related species. The results showed that the two species diverged ~5–10 million years ago (Ma), when the Qinghai–Tibet Plateau reached a certain height and the inland climate of the Asian continent became arid. In highly differentiated genomic regions, the relative divergence (FST) and absolute divergence (dxy) were significantly higher than the genomic background, θπ and shared polymorphisms decreased whereas fixed differences increased, which indicated that natural selection played a key role in the reproductive isolation of the two species. In addition, we found several genes that were related to reproduction that may be involved in explaining the reproductive isolation. Using phylogenetic trees resolved from haplotype data of Populus tomentosa and P. adenopoda, the maternal origin of P. tomentosa from P. adenopoda was likely to be located in Hubei and Chongqing Provinces.  相似文献   

16.
Genomic signatures of ancient asexual lineages   总被引:9,自引:0,他引:9  
Ancient asexuals – organisms that have lived without sex for millions of years – offer unique opportunities for discriminating among the various theories of the maintenance of sex. The last few years have seen molecular studies of a number of putative ancient asexual lineages, including bdelloid rotifers, Darwinulid ostracods, and mycorrhizal fungi. To help make sense of the diverse findings of such studies, we present a review and classification of the predicted effects of loss of sex on the eukaryotic genome. These include: (1) direct effects on the genetic structure of individuals and populations; (2) direct effects on the mutation rate due to the loss of the sexual phase; (3) decay of genes specific to sex and recombination; (4) effects of the cessation of sexual selection; (5) dis-adaptation due to the reduced efficiency of selection; and (6) adaptations to asexuality. We discuss the utility of the various predictions for detecting ancient asexuality, for testing hypotheses of the reversibility of a transition to asexuality, and for discriminating between theories of sex. In addition, we review the current status of putative ancient asexuals.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 69–84.  相似文献   

17.
18.
Studying the effect of similar environments on diverse genetic backgrounds has long been a goal of evolutionary biologists with studies typically relying on experimental approaches. Pink salmon, a highly abundant and widely ranging salmonid, provide a naturally occurring opportunity to study the effects of similar environments on divergent genetic backgrounds due to a strict two‐year semelparous life history. The species is composed of two reproductively isolated lineages with overlapping ranges that share the same spawning and rearing environments in alternate years. We used restriction‐site‐associated DNA (RAD) sequencing to discover and genotype approximately 8000 SNP loci in three population pairs of even‐ and odd‐year pink salmon along a latitudinal gradient in North America. We found greater differentiation within the odd‐year than within the even‐year lineage and greater differentiation in the southern pair from Puget Sound than in the northern Alaskan population pairs. We identified 15 SNPs reflecting signatures of parallel selection using both a differentiation‐based method (BAYESCAN) and an environmental correlation method (BAYENV). These SNPs represent genomic regions that may be particularly informative in understanding adaptive evolution in pink salmon and exploring how differing genetic backgrounds within a species respond to selection from the same natural environment.  相似文献   

19.
20.
Next‐generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP‐glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well‐characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号