首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Inactivation of the left-right asymmetry gene Pitx2 has been shown, in mice, to result in right isomerism with associated defects that are similar to that found in humans. We show that the Pitx2c isoform is expressed asymmetrically in a presumptive secondary heart field within the branchial arch and splanchnic mesoderm that contributes to the aortic sac and conotruncal myocardium. Pitx2c was expressed in left aortic sac mesothelium and in left splanchnic and branchial arch mesoderm near the junction of the aortic sac and branchial arch arteries. Mice with an isoform-specific deletion of Pitx2c had defects in asymmetric remodeling of the aortic arch vessels. Fatemapping studies using a Pitx2 cre recombinase knock-in allele showed that daughters of Pitx2-expressing cells populated the right and left ventricles, atrioventricular cushions and valves and pulmonary veins. In Pitx2 mutant embryos, descendents of Pitx2-expressing cells failed to contribute to the atrioventricular cushions and valves and the pulmonary vein, resulting in abnormal morphogenesis of these structures. Our data provide functional evidence that the presumptive secondary heart field, derived from branchial arch and splanchnic mesoderm, patterns the forming outflow tract and reveal a role for Pitx2c in aortic arch remodeling. Moreover, our findings suggest that a major function of the Pitx2-mediated left right asymmetry pathway is to pattern the aortic arches, outflow tract and atrioventricular valves and cushions.  相似文献   

2.
3.
Current models of left-right asymmetry hold that an early asymmetric signal is generated at the node and transduced to lateral plate mesoderm in a linear signal transduction cascade through the function of the Nodal signaling molecule. The Pitx2 homeobox gene functions at the final stages of this cascade to direct asymmetric morphogenesis of selected organs including the heart. We previously showed that Pitx2 regulated an asymmetric pathway that was independent of cardiac looping suggesting a second asymmetric cardiac pathway. It has been proposed that in the cardiac outflow tract Pitx2 functions in both cardiac neural crest, as a target of canonical Wnt-signaling, and in the mesoderm-derived cardiac second lineage. We used fate mapping, conditional loss of function, and chimera analysis in mice to investigate the role of Pitx2 in outflow tract morphogenesis. Our findings reveal that Pitx2 is dispensable in the cardiac neural crest but functions in second lineage myocardium revealing that this cardiac progenitor field is patterned asymmetrically.  相似文献   

4.
Splanchnic mesoderm in the region described as the second heart field (SHF) is marked by Islet1 expression in the mouse embryo. The anterior part of this region expresses a number of markers, including Fgf10, and the contribution of these cells to outflow tract and right ventricular myocardium has been established. We now show that the posterior region also has myocardial potential, giving rise specifically to differentiated cells of the atria. This conclusion is based on explant experiments using endogenous and transgenic markers and on DiI labelling, followed by embryo culture. Progenitor cells in the right or left posterior SHF contribute to the right or left common atrium, respectively. Explant experiments with transgenic embryos, in which the transgene marks the right atrium, show that atrial progenitor cells acquire right-left identity between the 4- and 6-somite stages, at the time when Pitx2c is first expressed. Manipulation of Pitx2c, by gain- and loss-of-function, shows that it represses the transgenic marker of right atrial identity. A repressive effect is also seen on the proliferation of cells in the left sinus venosus and in cultured explants from the left side of the posterior SHF. This report provides new insights into the contribution of the SHF to atrial myocardium and the effect of Pitx2c on the formation of the left atrium.  相似文献   

5.
The left-right asymmetry of the vertebrate heart is evident in the topology of the heart loop, and in the dissimilar morphology of the left and right chambers. How left-right asymmetric gene expression patterns influence the development of these features is not understood, since the individual roles of the left and right sides of the embryo in heart looping or chamber morphogenesis have not been specifically defined. To this end, we have constructed a bilateral heart-specific fate map of the left and right contributions to the developing heart in the Xenopus embryo. Both the left and right sides contribute to the conoventricular segment of the heart loop; however, the left side contributes to the inner curvature and ventral face of the loop while the right side contributes to the outer curvature and dorsal aspect. In contrast, the left atrium is derived mainly from the original left side of the embryo, while the right atrium is derived primarily from the right side. A comparison of our fate map with the domain of expression of the left-right gene, Pitx2, in the left lateral plate mesoderm, reveals that this Pitx2-expressing region is fated to form the inner curvature of the heart loop, the left atrioventricular canal, and the dorsal aspect of the left atrium. We discuss the implications of these results for the role of left-right asymmetric gene expression in heart looping and chamber morphogenesis.  相似文献   

6.
7.
8.
9.
The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior-posterior (A-P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc), allow us to distinguish two populations of myocardial precursors at an early stage, well before the heart tube forms. These myocardial subpopulations, which may represent the ventricular and atrial precursors, are organized in a medial-lateral pattern within the precardiac mesoderm. Our examinations of cmlc2 and vmhc expression throughout the process of heart tube assembly indicate the important role of an intermediate structure, the cardiac cone, in the conversion of this early medial-lateral pattern into the A-P pattern of the heart tube. To gain insight into the genetic regulation of heart tube assembly and patterning, we examine cmlc2 and vmhc expression in several zebrafish mutants. Analyses of mutations that cause cardia bifida demonstrate that the achievement of a proper cardiac A-P pattern does not depend upon cardiac fusion. On the other hand, cardiac fusion does not ensure the proper A-P orientation of the ventricle and atrium, as demonstrated by the heart and soul mutation, which blocks cardiac cone morphogenesis. Finally, the pandora mutation interferes with the establishment of the early medial-lateral myocardial pattern. Altogether, these data suggest new models for the mechanisms that regulate the formation of a patterned heart tube and provide an important framework for future analyses of zebrafish mutants with defects in this process.  相似文献   

10.
Pitx2, a bicoid-related homeobox gene, is involved in Rieger's syndrome and the left-right (L-R) asymmetrical pattern formation in body plan. In order to define the genomic structure and roles of Pitx2, we analyzed the genomic structure and generated Pitx2-deficient mice with the lacZ gene in the homeobox-containing exon of Pitx2. We were able to show that among three isoforms of Pitx2, Pitx2c shows asymmetrical expression whereas Pitx2a, Pitx2b and Pitx2c show symmetrical expression. In Pitx2(-)(/)(-) embryos there was an increase in mesodermal cells in the distal end of the left lateral body wall and an amnion continuous with the lateral body wall thickened in its mesodermal layer. These changes resulted in a failure of ventral body wall closure. In lung and heart in which Pitx2 is expressed asymmetrically, right pulmonary isomerism, atrioventricular canals with prominent swelling, and juxtaposition of the atrium were detected. The hearts failed to develop tricuspid and mitral valves and a common atrioventricular valve forms. Further, dysgenesis of the Pitx2(-)(/)(-) extraocular muscle and thickening of the mesothelial layer of cornea were observed in the ocular system where Pitx2 is expressed symmetrically, and these resulted in enophthalmos. The present study shows that Pitx2 expressed in various sites participates in morphogenesis through three types of actions: the involvement of asymmetric Pitx2 expression in the entire morphogenetic process of L-R asymmetric organs; the involvement of asymmetric Pitx2 expression in the regional morphogenesis of asymmetric organs; and finally the involvement of symmetric Pitx2 expression in the regional morphogenesis of symmetric organs.  相似文献   

11.
12.
13.
14.
15.
Vitamin A-deficient (VAD) quail embryos have severe abnormalities, including a high incidence of reversed cardiac situs. Using this model we examined in vivo the physiological function of vitamin A in the left/right (L/R) cardiac asymmetry pathway. Molecular analysis reveals the expression of early asymmetry genes activin receptor IIa, sonic hedgehog, Caronte, Lefty-1, and Fgf8 to be unaffected by the lack of retinoids, while expression of the downstream genes nodal-related, snail-related (cSnR), and Pitx2 is altered. In VAD embryos nodal expression in left lateral plate mesoderm (LPM) is severely downregulated and the expression domain altered during neurulation. Similarly, the expression of cSnR in the right LPM and of Pitx2 in the left side posterior heart-forming region (HFR) is downregulated in the VAD embryos. The lack of retinoids does not cause randomization or ectopic expression of nodal, cSnR, or Pitx2. At the six- to eight-somite stage nodal is expressed transiently in the left posterior HFR of normal quail embryos; this expression is missing in VAD embryos and may be linked to the loss of Pitx2 expression in this region of VAD quail embryos. Administration of retinoids to VAD embryos prior to the six-somite stage rescues the expression of nodal, cSnR, and Pitx2 as well as the randomized VAD cardiac phenotype. There is an absolute requirement for retinoids at the four- to five-somite developmental window for cardiogenesis and cardiac L/R specification to proceed normally. We conclude that retinoids do not regulate the left/right-specific sidedness assignments for expression of genes on the vertebrate cardiac asymmetry pathway, but are required during neurulation for the maintenance of adequate levels of their expression and for the development of the posterior heart tube and a loopable heart. Cardiac asymmetry may be but one of several critical events regulated by retinoid signaling in the retinoid-sensitive developmental window.  相似文献   

16.
The murine dishevelled 2 (Dvl2) gene is an ortholog of the Drosophila segment polarity gene Dishevelled, a member of the highly conserved Wingless/Wnt developmental pathway. Dvl2-deficient mice were produced to determine the role of Dvl2 in mammalian development. Mice containing null mutations in Dvl2 present with 50% lethality in both inbred 129S6 and in a hybrid 129S6-NIH Black Swiss background because of severe cardiovascular outflow tract defects, including double outlet right ventricle, transposition of the great arteries and persistent truncus arteriosis. The majority of the surviving Dvl2(-/-) mice were female, suggesting that penetrance was influenced by sex. Expression of Pitx2 and plexin A2 was attenuated in Dvl2 null mutants, suggesting a defect in cardiac neural crest development during outflow tract formation. In addition, approximately 90% of Dvl2(-/-) mice have vertebral and rib malformations that affect the proximal as well as the distal parts of the ribs. These skeletal abnormalities were more pronounced in mice deficient for both Dvl1 and Dvl2. Somite differentiation markers used to analyze Dvl2(-/-) and Dvl1(-/-);Dvl2(-/-) mutant embryos revealed mildly aberrant expression of Uncx4.1, delta 1 and myogenin, suggesting defects in somite segmentation. Finally, 2-3% of Dvl2(-/-) embryos displayed thoracic spina bifida, while virtually all Dvl1/2 double mutant embryos displayed craniorachishisis, a completely open neural tube from the midbrain to the tail. Thus, Dvl2 is essential for normal cardiac morphogenesis, somite segmentation and neural tube closure, and there is functional redundancy between Dvl1 and Dvl2 in some phenotypes.  相似文献   

17.
18.
The heart is one of the first organs to form during embryogenesis since its circulatory function is critical from early stages for embryo survival. In man, morphological events are affected by molecular perturbations, which can lead to a congenital heart defect. It is important therefore to understand not only the molecular signals, but also the morphological events, which govern myocardial cell identity. The study of transgenic mouse lines, Mlc1v-nlacZ-24 and Mlc3f-nlacZ-2, has led to the identification of a new precardiac territory, the anterior heart field, which has also been described recently in birds, and which contributes to the myocardium of the arterial pole of the heart. The use of explant cultures also indicates that pharyngeal mesoderm participates in the formation of the outflow tract and right ventricle and shows that the primitive heart tube has a predominantly left ventricular identity. We have also shown that Fgf-10 is expressed in the anterior heart field, where a role for FGF signaling in arterial pole morphogenesis is suggested by inhibitor experiments. Finally explant cultures have been employed to examine the acquisition of left-right atrial identity. The Mlc3f-nlacZ-2 line, which marks the right atrium, allowed us to determine the time window during which left-right signaling confers left-right atrial identity.  相似文献   

19.
20.
Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号