首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3T3-TNR9 cell line is a variant of Swiss 3T3 cells which does not respond mitogenically to tumor promoters, but does respond mitogenically to epidermal growth factor, fibroblast growth factor, and serum. To elucidate differences between tumor promoters and polypeptide mitogens in the pathway(s) of mitogenesis which might be responsible for the nonresponsiveness of the 3T3-TNR9 cells, we have examined in these cells the early protein phosphorylation events known to be associated with mitogenesis in the parental 3T3 cells. We find that the 3T3-TNR9 cells display levels of tetradecanoyl phorbol acetate binding and of a calcium- and phospholipid-dependent protein kinase activity which are at least the equal of those seen in the parental 3T3 cells, implicating some postreceptor event in the nonmitogenic phenotype. In addition, we find that phosphorylation of the epidermal growth factor receptor and of 80-kDa and 22-kDa proteins, as well as the tyrosine phosphorylation of a 42-kDa protein, all proceed normally in the nonmitogenic variant, even though these phosphorylations must depend on the activation of different kinases. Thus, all these early phosphorylation reactions are intact in the 3T3-TNR9 cells. Although these phosphorylations may be necessary, they clearly are insufficient to trigger mitogenesis.  相似文献   

2.
To investigate the mechanism of the morphological changes induced in cells by tumor-promoting phorbol esters, we isolated a 3T3 cell variant which was morphologically unresponsive to phorbol esters and analyzed the activation of protein kinase C induced by the phorbol esters in it. The variant resembled the parent cells in its activation and appeared to have been altered at some step distal to the early events of protein kinase C activation.  相似文献   

3.
We isolated a group of genes that are rapidly and transiently induced in 3T3 cells by tetradecanoyl phorbol acetate (TPA). These genes are called TIS genes (for TPA-inducible sequences). Epidermal growth factor (EGF), fibroblast growth factor (FGF), and TPA activated TIS gene expression with similar induction kinetics. TPA pretreatment to deplete protein kinase C activity did not abolish the subsequent induction of TIS gene expression by epidermal growth factor or fibroblast growth factor; both peptide mitogens can activate TIS genes through a protein kinase C-independent pathway(s). We also analyzed TIS gene expression in three TPA-nonproliferative variants (3T3-TNR2, 3T3-TNR9, and A31T6E12A). The results indicate that (i) modulation of a TPA-responsive sodium-potassium-chloride transport system is not necessary for TIS gene induction either by TPA or by other mitogens and (ii) TIS gene induction is not sufficient to guarantee a proliferative response to mitogenic stimulation.  相似文献   

4.
Baudouin E  Charpenteau M  Ranjeva R  Ranty B 《Planta》2002,214(3):400-405
Phorbol 12-myristate 13-acetate (PMA), a potent activator of protein kinases in animals, elicits the transient activation of a 45-kDa protein kinase in tobacco cell-suspension cultures. The 45-kDa protein kinase preferentially phosphorylates myelin basic protein (MBP), a general substrate for MAPK. Studies using cycloheximide indicated that protein synthesis is not required for the activation of the kinase. Treatment of tobacco cell extracts containing the activated kinase with either serine/threonine-specific or tyrosine-specific protein phosphatase abolished the kinase activity, which consequently appears to be regulated by phosphorylation. By using an immune complex kinase assay with antibodies specific for stress-responsive MAPKs, we show that the PMA-activated kinase is immunologically related to the wound-induced protein kinase (WIPK), and not to the salicylic acid-induced protein kinase (SIPK), two representative members of the tobacco MAPK family, known to be activated by extracellular stimuli. Furthermore, the activated kinase was recognized by phospho-specific MAPK antibodies. Collectively, these results indicate that phorbol ester promotes the activation of a 45-kDa protein kinase related to WIPK in tobacco cells. Activation of WIPK in response to PMA is associated with protein phosphorylation but not with an increase in protein level.  相似文献   

5.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

6.
7.
p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis.   总被引:4,自引:0,他引:4  
Involvement of p38 mitogen-activated protein (MAP) kinase in human T cell cytokine synthesis was investigated. p38 MAP kinase was clearly induced in human Th cells activated through the TCR. SB203580, a highly selective inhibitor of p38 MAP kinase, inhibited the induction of p38 MAP kinase in human Th cells. Major T cell cytokines, IL-2, IL-4, IL-5, and IFN-gamma, were produced by Der f 2-specific Th clones upon stimulation through the TCR. IL-5 synthesis alone was significantly inhibited by SB203580 in a dose-dependent manner, whereas the production of IL-2, IL-4, and IFN-gamma was not affected. The proliferation of activated T cells was not affected. IL-5 synthesis of human Th clones induced upon stimulation with rIL-2, phorbol ester plus anti-CD28 mAb, and immobilized anti-CD3 mAb plus soluble anti-CD28 mAb was also suppressed by SB203580 in the same concentration response relationship. The results clearly indicated that IL-5 synthesis by human Th cells is dependent on p38 MAP kinase activity, and is regulated distinctly from IL-2, IL-4, and IFN-gamma synthesis. Selective control of IL-5 synthesis will provide a novel treatment devoid of generalized immune suppression for bronchial asthma and atopic dermatitis that are characterized by eosinophilic inflammation.  相似文献   

8.
Phosphatidylinositide-3-OH-kinase (PI 3-kinase) is an upstream activator of p42/p44 mitogen-activated protein kinase (MAPK), but the role of PI 3-kinase-dependent MAPK remains obscure. Here we demonstrate that in a variety of different cell types, PI 3-kinase inhibition results in an inhibition of MAPK in unstimulated cells but does not interfere with growth factor-, or TPA-induced MAPK activity. Furthermore, inhibition of either PI 3-kinase or MEK/MAPK results in cell death in serum-starved cells. We concluded that basal, but not induced MAPK activity is mediated by PI 3-kinase and that this PI 3-kinase-mediated MEK/MAPK activity is essential for cell survival in quiescent cells.  相似文献   

9.
10.
Proteins of the ras family of oncogenes have been implicated in signal transduction pathways initiated by protein kinase C (PKC) and by tyrosine kinase oncogenes and receptors, but the role that ras plays in these diverse signalling systems is poorly defined. The activity of ras proteins has been shown to be controlled in part by a cellular protein, GAP (GTPase-activating protein), that negatively regulates p21c-ras by enhancing its intrinsic GTPase activity. Thus, overexpression of GAP provides a tool for determining the step(s) in signal transduction dependent on p21c-ras activity. In this paper, we report that overexpression of GAP blocks the phorbol ester (tetradecanoyl phorbol acetate [TPA])-induced activation of p42 mitogen-activated protein kinase (p42mapk), c-fos expression, and DNA synthesis. GAP overexpression did not block responses to serum or fluoroaluminate. Moreover, not all biochemical events elicited by TPA were affected by GAP overexpression, as increased glucose uptake and phosphorylation of MARCKS, a major PKC substrate, occurred normally. Reduction of GAP expression to near normal levels restored the ability of the cells to activate p42mapk in response to TPA. These findings suggest that ras and GAP together play a key role in a PKC-dependent signal transduction pathway which leads to p42mapk activation and cell proliferation.  相似文献   

11.
Mixed-lineage protein kinase 3 (MLK3) is a member of the mitogen-activated protein (MAP) kinase kinase kinase group that has been implicated in multiple signaling cascades, including the NF-kappaB pathway and the extracellular signal-regulated kinase, c-Jun NH(2)-terminal kinase (JNK), and p38 MAP kinase pathways. Here, we examined the effect of targeted disruption of the murine Mlk3 gene. Mlk3(-/-) mice were found to be viable and healthy. Primary embryonic fibroblasts prepared from these mice exhibited no major signaling defects. However, we did find that MLK3 deficiency caused a selective reduction in tumor necrosis factor (TNF)-stimulated JNK activation. Together, these data demonstrate that MLK3 contributes to the TNF signaling pathway that activates JNK.  相似文献   

12.
Mitogen-activated protein (MAP) kinase phosphatase 3 (MKP3) is a cytoplasmic dual specificity phosphatase that functions to attenuate signaling via dephosphorylation and subsequent deactivation of its substrate and allosteric regulator, extracellular signal-regulated protein kinase 2 (ERK2). Expression of MKP3 has been shown to be under the control of ERK2, thus providing an elegant feedback mechanism for regulating the rate and duration of proliferative signals. Previously published studies suggest that MKP3 might serve as a tumor suppressor; however, significantly elevated, rather than reduced, levels of this protein have been reported in early lesions. Because overexpression of this phosphatase is counterintuitive to a proposed tumor suppressor function, the observed cellular tolerance suggested a self-inactivation mechanism. Using surface plasmon resonance, we have provided direct evidence of physical interaction between the N- and C-terminal domains. Kinetic analysis using dimethyl sulfoxide to activate the C-terminal fragment in the absence of ERK2 showed that the isolated C-terminal domain had higher catalytic efficiency than the similarly activated full-length protein. Furthermore, when the isolated N-terminal domain was added to the activated C-terminal domain, a dose-dependant inhibition of catalytic activity was observed. The similarity between the K(I) and K(D) values obtained indicate that interdomain binding stabilizes the inactive conformation of the catalytic site and implies that the N-terminal domain functions as an allosteric inhibitor of phosphatase activity. Finally, we have provided evidence for oligomerization of MKP3 in pancreatic cancer cells expressing elevated levels of this phosphatase.  相似文献   

13.
Hyperinsulinemia (HI) and insulin resistance (IR) are frequentlyassociated with hypertension and atherosclerosis. However, the exactroles of HI and IR in the development of hypertension are unclear.Mitogen-activated protein kinases (MAPK) are well-characterized intracellular mediators of cell proliferation. In this study, weexamined the contribution of MAPK pathway in insulin-stimulated mitogenesis using primary vascular smooth muscle cells (VSMCs) isolatedfrom aortas of normotensive Wistar-Kyoto rats (WKY) and spontaneoushypertensive rats (SHR). VSMCs were grown to confluence in culture,serum starved, and examined for DNA synthesis {using [3H]thymidine (TDR),immunoprecipitated MAPK activity, and MAPK phosphatase (MKP-1)induction}. Basal rate of TDR incorporation into DNA was twofoldhigher in SHR compared with WKY (P < 0.005). Insulin caused a dose-dependent increase in TDR incorporation (150% over basal levels with 100 nM in 12 h). Stimulation was sustained for 24 h with a decline toward basal in 36 h. Pretreatment with insulin-like growth factor I (IGF-I) receptor antibody did notabolish mitogenesis mediated by 10-100 nM insulin, suggesting thatinsulin effect is mediated via its own receptors. Insulin had a smallmitogenic effect in WKY (33% over basal). Insulin-stimulated mitogenesis was accompanied by a dose-dependent increase in MAPK activity in SHR, with a peak activation (>2-fold over basal) between 5 and 10 min with 100 nM insulin. Insulin had very small effects onMAPK activity in WKY. In contrast, serum-stimulated MAPK activation wascomparable in WKY and SHR. Pretreatment with MEK inhibitor, PD-98059,completely blocked insulin's effect on MAPK activation andmitogenesis. Inhibition of phosphatidylinositol 3-kinase with wortmannin also prevented insulin's effects on MAPK activation andmitogenesis. In WKY, insulin and IGF-I treatment resulted in a rapidinduction of MKP-1, the dual-specificity MAPK phosphatase. Incontrast, VSMCs from SHR were resistant to insulin with respect toMPK-1 expression. We conclude that insulin is mitogenic in SHR, and theeffect appears to be mediated by sustained MAPK activation due toimpaired insulin-mediated MKP-1 mRNA expression, which may act asan inhibitory feedback loop in attenuating MAPK signaling.

  相似文献   

14.
15.
Heterotrimeric G protein G(q) stimulates the activity of p38 mitogen-activated protein kinase (MAPK) in mammalian cells. To investigate the signaling mechanism whereby alpha and betagamma subunits of G(q) activate p38 MAPK, we introduced kinase-deficient mutants of mitogen-activated protein kinase kinase 3 (MKK3), MKK4, and MKK6 into human embryonal kidney 293 cells. The activation of p38 MAPK by Galpha(q) and Gbetagamma was blocked by kinase-deficient MKK3 and MKK6 but not by kinase-deficient MKK4. In addition, Galpha(q) and Gbetagamma stimulated MKK3 and MKK6 activities. The MKK3 and MKK6 activations by Galpha(q), but not by Gbetagamma, were dependent on phospholipase C and c-Src. Galpha(q) stimulated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-dependent manner. On the other hand, Gbetagamma activated MKK3 in a Rac- and Cdc42-dependent manner and MKK6 in a Rho-, Rac-, and Cdc42-dependent manner. Gbetagamma-induced MKK3 and MKK6 activations were dependent on a tyrosine kinase other than c-Src. These results suggest that Galpha(q) and Gbetagamma stimulate the activity of p38 MAPK by regulating MKK3 and MKK6 through parallel signaling pathways.  相似文献   

16.
We have examined the immunocytochemical localization of protein kinase C (PKC) in NIH 3T3 cells using mAbs that recognize Type 3 PKC. In control cells, the immunofluorescent staining was similar with mAbs directed to either the catalytic or the regulatory domain of PKC. Type 3 PKC localized in a diffuse cytoplasmic pattern, while the nuclei were apparently unstained. Cytoskeletal components also were Treatment of the cells with phorbol 12-myristate 13-acetate (PMA) resulted in a redistribution of PKC with a specific increase in nuclear PKC. Compared to control cells, the staining with the anticatalytic domain mAbs changed markedly, covering the entire cell surface. In contrast, the staining by the antiregulatory domain mAb did not cover the cell surface and the nuclei remained unstained; these results suggest that PKC activation leads to a conformational change of the regulatory domain such that the epitope recognized by the antiregulatory domain mAb is not readily accessible. We have demonstrated by three criteria that PMA treatment specifically increased PKC in the nucleus: (a) immunofluorescent staining in isolated nuclei increased; (b) Western blots showed that our mAbs detected only one protein, the 82-kD PKC, whose level increased in nuclear lysates from PMA-treated cells; and (c) PKC activity increased in nuclear lysates. In fractionation studies we demonstrated that PKC specifically localized to the nuclear envelope fraction. These results demonstrate that PMA activation leads to a rapid redistribution of Type 3 PKC to the nuclear envelope, and suggests that this isozyme may play a role in mediating PKC-induced changes in gene expression.  相似文献   

17.
Articular chondrocytes respond to mechanical forces by alterations in gene expression, proliferative status, and metabolic functions. Little is known concerning the cell signaling systems that receive, transduce, and convey mechanical information to the chondrocyte interior. Here, we show that ex vivo cartilage compression stimulates the phosphorylation of ERK1/2, p38 MAPK, and SAPK/ERK kinase-1 (SEK1) of the JNK pathway. Mechanical compression induced a phased phosphorylation of ERK consisting of a rapid induction of ERK1/2 phosphorylation at 10 min, a rapid decay, and a sustained level of ERK2 phosphorylation that persisted for at least 24 h. Mechanical compression also induced the phosphorylation of p38 MAPK in strictly a transient fashion, with maximal phosphorylation occurring at 10 min. Mechanical compression stimulated SEK1 phosphorylation, with a maximum at the relatively delayed time point of 1 h and with a higher amplitude than ERK1/2 and p38 MAPK phosphorylation. These data demonstrate that mechanical compression alone activates MAPK signaling in intact cartilage. In addition, these data demonstrate distinct temporal patterns of MAPK signaling in response to mechanical loading and to the anabolic insulin-like growth factor-I. Finally, the data indicate that compression coactivates distinct signaling pathways that may help define the nature of mechanotransduction in cartilage.  相似文献   

18.
Stem cell factor (SCF) can be considered a cardinal cytokine in mast cell biology as it affects mast cell differentiation, survival, and migration. The objective of this study was to investigate the role of two mitogen-activated protein (MAP) kinases, extracellular signal-regulated kinase (ERK) and p38, in SCF-induced cell migration. This was examined in mouse mast cells by using PD 098059 and SB203580, which are specific inhibitors of mitogen-induced extracellular kinase (MEK) and p38 MAP kinase, respectively. SCF induced a rapid and transient activation of ERK and p38 in a dose-dependent manner. Inhibition of p38 activity by SB203580 was paralleled with a marked reduction of migration toward SCF, whereas the effect of the MEK inhibitor was less pronounced. This is the first report of a physiological function of SCF-dependent activation of p38. Whether p38-mediated mast cell migration is a possible target for suppression of mast cell hyperplasia remains to be determined.  相似文献   

19.
In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Calpha (PKCalpha) and beta activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCalpha and -beta activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCbeta with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCbeta block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCbeta. Finally, blocking PKCalpha expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCalpha and -beta. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCbeta plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.  相似文献   

20.
Mitogen-activated protein kinase (MAPK) 3/MAPK1 (also known as ERK1/ERK2) plays an important role in the signal transduction pathways. To our knowledge, however, its role in the development of testicular ischemia-reperfusion injury has not yet been investigated. Therefore, we studied the pattern of MAPK3/MAPK1 activation in a experimental model of testicular ischemia-reperfusion injury. We also investigated MAPK8 to understand whether an association exists between these two MAPKs. Adult male Sprague-Dawley rats were subjected to 1 h of testicular ischemia followed by 24 h of reperfusion or to a sham testicular ischemia-reperfusion. Animals were randomized to receive PD98059, which is an inhibitor of MAPK3/MAPK1 (10 mg/kg i.p. administered immediately after detorsion), or its vehicle. The time course of MAPK3/MAPK1, MAPK8, and tumor necrosis factor (TNF; also known as TNF alpha) expression and a histological examination in both the ischemic-reperfused testis and the contralateral one were performed. In both testes, MAPK3/MAPK1 and MAPK8 expression appeared following 10 min of reperfusion and reached their highest activation after 30 min. The MAPK levels slowly decreased, and no significant expression of either kinase was observed following 2 h of reperfusion. Expression of TNF was evident after 1 h of reperfusion and reached its maximum increase after 3 h. PD98059 blunted MAPK3/MAPK1 and MAPK8, reduced TNF expression, and improved the testicular damage caused by ischemia-reperfusion injury in both testes. These data emphasize that MAPK3/MAPK1 has a role in testicular damage and that its blockade might have a future therapeutic role for the management of patients with unilateral testicular torsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号