首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apicolateral tight junctions (TJs) between epithelial cells are multiprotein complexes regulating membrane polarity and paracellular transport and also contribute to signalling pathways affecting cell proliferation and gene expression. ZO-2 and other ZO family members form a sub-membranous scaffold for binding TJ constituents. We investigated ZO-2 contribution to TJ biogenesis and function during trophectoderm epithelium differentiation in mouse preimplantation embryos. Our data indicate that ZO-2 is expressed from maternal and embryonic genomes with maternal ZO-2 protein associated with nuclei in zygotes and particularly early cleavage stages. Embryonic ZO-2 assembled at outer blastomere apicolateral junctional sites from the late 16-cell stage. Junctional ZO-2 first co-localised with E-cadherin in a transient complex comprising adherens junction and TJ constituents before segregating to TJs after their separation from the blastocyst stage (32-cell onwards). ZO-2 siRNA microinjection into zygotes or 2-cell embryos resulted in specific knockdown of ZO-2 mRNA and protein within blastocysts. Embryos lacking ZO-2 protein at trophectoderm TJs exhibited delayed blastocoel cavity formation but underwent normal cell proliferation and outgrowth morphogenesis. Quantitative analysis of trophectoderm TJs in ZO-2-deficient embryos revealed increased assembly of ZO-1 but not occludin, indicating ZO protein redundancy as a compensatory mechanism contributing to the mild phenotype observed. In contrast, ZO-1 knockdown, or combined ZO-1 and ZO-2 knockdown, generated a more severe inhibition of blastocoel formation indicating distinct roles for ZO proteins in blastocyst morphogenesis.  相似文献   

2.
Zonula occludens (ZO)-1/2/3 are the members of the TJ-MAGUK family of membrane-associated guanylate kinases associated with tight junctions. To investigate the role of ZO-1 (encoded by Tjp1) in vivo, ZO-1 knockout (Tjp1(-/-)) mice were generated by gene targeting. Although heterozygous mice showed normal development and fertility, delayed growth and development were evident from E8.5 onward in Tjp1(-/-) embryos, and no viable Tjp1(-/-) embryos were observed beyond E11.5. Tjp1(-/-) embryos exhibited massive apoptosis in the notochord, neural tube area, and allantois at embryonic day (E)9.5. In the yolk sac, the ZO-1 deficiency induced defects in vascular development, with impaired formation of vascular trees, along with defective chorioallantoic fusion. Immunostaining of wild-type embryos at E8.5 for ZO-1/2/3 revealed that ZO-1/2 were expressed in almost all embryonic cells, showing tight junction-localizing patterns, with or without ZO-3, which was confined to the epithelial cells. ZO-1 deficiency depleted ZO-1-expression without influence on ZO-2/3 expression. In Tjp1(+/+) yolk sac extraembryonic mesoderm, ZO-1 was dominant without ZO-2/3 expression. Thus, ZO-1 deficiency resulted in mesoderms with no ZO-1/2/3, associated with mislocalization of endothelial junctional adhesion molecules. As a result, angiogenesis was defected in Tjp1(-/-) yolk sac, although differentiation of endothelial cells seemed to be normal. In conclusion, ZO-1 may be functionally important for cell remodeling and tissue organization in both the embryonic and extraembryonic regions, thus playing an essential role in embryonic development.  相似文献   

3.
Tight junctions (TJs) and adherens junctions (AJs) are major junctional apparatuses in epithelial cells. Claudins and junctional adhesion molecules (JAMs) are major cell adhesion molecules (CAMs) at TJs, whereas cadherins and nectins are major CAMs at AJs. Claudins and JAMs are associated with ZO proteins, whereas cadherins are associated with β- and α-catenins, and nectins are associated with afadin. We previously showed that nectins first form cell-cell adhesions where the cadherin-catenin complex is recruited to form AJs, followed by the recruitment of the JAM-ZO and claudin-ZO complexes to the apical side of AJs to form TJs. It is not fully understood how TJ components are recruited to the apical side of AJs. We studied the roles of afadin and ZO-1 in the formation of TJs in Madin-Darby canine kidney (MDCK) cells. Before the formation of TJs, ZO-1 interacted with afadin through the two proline-rich regions of afadin and the SH3 domain of ZO-1. During and after the formation of TJs, ZO-1 dissociated from afadin and associated with JAM-A. Knockdown of afadin impaired the formation of both AJs and TJs in MDCK cells, whereas knockdown of ZO-1 impaired the formation of TJs, but not AJs. Re-expression of full-length afadin restored the formation of both AJs and TJs in afadin-knockdown MDCK cells, whereas re-expression of afadin-ΔPR1–2, which is incapable of binding to ZO-1, restored the formation of AJs, but not TJs. These results indicate that the transient interaction of afadin with ZO-1 is necessary for the formation of TJs in MDCK cells.  相似文献   

4.
Oxidants such as monochloramine (NH(2)Cl) decrease epithelial barrier function by disrupting perijunctional actin and possibly affecting the distribution of tight junctional proteins. These effects can, in theory, disturb cell polarization and affect critical membrane proteins by compromising molecular fence function of the tight junctions. To examine these possibilities, we investigated the actions of NH(2)Cl on the distribution, function, and integrity of barrier-associated membrane, cytoskeletal, and adaptor proteins in human colonic Caco-2 epithelial monolayers. NH(2)Cl causes a time-dependent decrease in both detergent-insoluble and -soluble zonula occludens (ZO)-1 abundance, more rapidly in the former. Decreases in occludin levels in the detergent-insoluble fraction were observed soon after the fall of ZO-1 levels. The actin depolymerizer cytochalasin D resulted in a decreased transepithelial resistance (TER) more quickly than NH(2)Cl but caused a more modest and slower reduction in ZO-1 levels and in occludin redistribution. No changes in the cellular distribution of claudin-1, claudin-5, or ZO-2 were observed after NH(2)Cl. However, in subsequent studies, the immunofluorescent cellular staining pattern of all these proteins was altered by NH(2)Cl. The actin-stabilizing agent phalloidin did not prevent NH(2)Cl-induced decreases in TER or increases of apical to basolateral flux of the paracellular permeability marker mannitol. However, it partially blocked changes in ZO-1 and occludin distribution. Tight junctional fence function was also compromised by NH(2)Cl, observed as a redistribution of the alpha-subunit of basolateral Na(+)-K(+)-ATPase to the apical membrane, an effect not found with the apical membrane protein Na(+)/H(+) exchanger isoform 3. In conclusion, oxidants not only disrupt perijunctional actin but also cause redistribution of tight junctional proteins, resulting in compromised intestinal epithelial barrier and fence function. These effects are likely to contribute to the development of malabsorption and dysfunction associated with mucosal inflammation of the digestive tract.  相似文献   

5.
6.
Intestinal epithelial tight junction (TJ) barrier dysfunction may lead to inflammation and mucosal injury. Glutamine (GLN) plays a role in maintenance of intestinal barrier function in various animal models and critically ill humans. Recent evidence from intestinal cell monolayers indicates that GLN maintains transepithelial resistance and decreases permeability. The mechanisms of these effects remain undefined. We hypothesized that GLN affects proteins involved in the intercellular junctional complex. GLN availability was controlled in Caco-2 monolayers by addition to the medium and treatment with methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Expression of TJ proteins, claudin-1, occludin, and zonula occluden (ZO)-1 was measured by immunoblotting. Localization of TJ proteins was evaluated by immunofluorescence light microscopy. Structure of TJ was determined by transmission electron microscopy (TEM). Deprivation of GLN decreased claudin-1, occludin, and ZO-1 protein expression and caused a disappearance of perijunctional claudin-1 and a reduction of occludin but had no effect on ZO-1. TEM revealed that MSO-treated cells in the absence of GLN formed irregular junctional complexes between the apical lateral margins of adjoining cells. These findings indicate that TJ protein expression and cellular localization in Caco-2 cell monolayers rely on GLN. This mechanism may similarly relate to GLN-mediated modulation of intestinal barrier function in stressed animals and humans.  相似文献   

7.
The structure and function of both adherens (AJ) and tight (TJ) junctions are dependent on the cortical actin cytoskeleton. The zonula occludens (ZO)-1 and -2 proteins have context-dependent interactions with both junction types and bind directly to F-actin and other cytoskeletal proteins, suggesting ZO-1 and -2 might regulate cytoskeletal activity at cell junctions. To address this hypothesis, we generated stable Madin-Darby canine kidney cell lines depleted of both ZO-1 and -2. Both paracellular permeability and the localization of TJ proteins are disrupted in ZO-1/-2-depleted cells. In addition, immunocytochemistry and electron microscopy revealed a significant expansion of the perijunctional actomyosin ring associated with the AJ. These structural changes are accompanied by a recruitment of 1-phosphomyosin light chain and Rho kinase 1, contraction of the actomyosin ring, and expansion of the apical domain. Despite these changes in the apical cytoskeleton, there are no detectable changes in cell polarity, localization of AJ proteins, or the organization of the basal and lateral actin cytoskeleton. We conclude that ZO proteins are required not only for TJ assembly but also for regulating the organization and functional activity of the apical cytoskeleton, particularly the perijunctional actomyosin ring, and we speculate that these activities are relevant both to cellular organization and epithelial morphogenesis.  相似文献   

8.
9.
10.
Coordinated cell proliferation and ability to form intercellular seals are essential features of epithelial tissue function. Tight junctions (TJs) classically act as paracellular diffusion barriers. More recently, their role in regulating epithelial cell proliferation in conjunction with scaffolding zonula occludens (ZO) proteins has come to light. The kidney collecting duct (CD) is a model of tight epithelium that displays intense proliferation during embryogenesis followed by very low cell turnover in the adult kidney. Here, we examined the influence of each ZO protein (ZO-1, -2 and -3) on CD cell proliferation. We show that all 3 ZO proteins are strongly expressed in native CD and are present at both intercellular junctions and nuclei of cultured CD principal cells (mCCDcl1). Suppression of either ZO-1 or ZO-2 resulted in increased G0/G1 retention in mCCDcl1 cells. ZO-2 suppression decreased cyclin D1 abundance while ZO-1 suppression was accompanied by increased nuclear p21 localization, the depletion of which restored cell cycle progression. Contrary to ZO-1 and ZO-2, ZO-3 expression at intercellular junctions dramatically increased with cell density and relied on the presence of ZO-1. ZO-3 depletion did not affect cell cycle progression but increased cell detachment. This latter event partly relied on increased nuclear cyclin D1 abundance and was associated with altered β1-integrin subcellular distribution and decreased occludin expression at intercellular junctions. These data reveal diverging, but interconnected, roles for each ZO protein in mCCDcl1 proliferation. While ZO-1 and ZO-2 participate in cell cycle progression, ZO-3 is an important component of cell adhesion.  相似文献   

11.
For the zonula adherens (ZA) to be established by linear arrangement of adherens junctions (AJs) in epithelial sheet cells, critical for the epithelial cell sheet formation and intercellular barrier function, myosin-2 is supposedly integrated into the ZA with the result of overlapping localization of E-cadherin/actin/myosin-2. Here, we immunofluorescently showed that myosin-2 failed to be integrated into the ZA in cultured epithelial-type ZO1(ko)/2(kd) Eph4 cells lacking ZO-1 and -2 (zonula occludens-1 and -2) by knockout and knockdown, respectively. Instead, a linearized but fragmented arrangement of AJs was formed in the way that it was positive for E-cadherin/actin, but negative for myosin-2 (designated prezonula-AJ). Transfection of full-length ZO-1 or ZO-2, or ZO-1 lacking its PDZ (PSD-95/discs large/zonula occludens-1)-1/2 domains (but not one lacking PDZ-1/2/3) into ZO1(ko)/2(kd) Eph4 cells restored the junctional integration of myosin-2 with prezonula-AJ to establish the ZA. Transfection of dominant-active RhoA or Rho-kinase (ROCK), as well as administration of lysophosphatidic acid or Y27632, which activates RhoA or inhibits ROCK, respectively, suggested that RhoA regulated the junctional integration of myosin-2 into ZA in a manner such that ROCK played a necessary but not-sufficient role. Fluorescence resonance energy transfer analyses revealed that spatiotemporal Rho-activation occurred in a ZO-1/2–dependent way to establish ZA from primordial forms in epithelial cells.  相似文献   

12.
13.
Crohn's disease (CD) patients have an abnormal increase in intestinal epithelial permeability. The defect in intestinal tight junction (TJ) barrier has been proposed as an important etiologic factor of CD. TNF-alpha increases intestinal TJ permeability. Because TNF-alpha levels are markedly increased in CD, TNF-alpha increase in intestinal TJ permeability could be a contributing factor of intestinal permeability defect in CD. Our purpose was to determine some of the intracellular mechanisms involved in TNF-alpha modulation of intestinal epithelial TJ permeability by using an in vitro intestinal epithelial system consisting of filter-grown Caco-2 monolayers. TNF-alpha produced a concentration- and time-dependent increase in Caco-2 TJ permeability. TNF-alpha-induced increase in Caco-2 TJ permeability correlated with Caco-2 NF-kappa B activation. Inhibition of TNF-alpha-induced NF-kappa B activation by selected NF-kappa B inhibitors, curcumin and triptolide, prevented the increase in Caco-2 TJ permeability, indicating that NF-kappa B activation was required for the TNF-alpha-induced increase in Caco-2 TJ permeability. This increase in Caco-2 TJ permeability was accompanied by down-regulation of zonula occludens (ZO)-1 proteins and alteration in junctional localization of ZO-1 proteins. TNF-alpha modulation of ZO-1 protein expression and junctional localization were also prevented by NF-kappa B inhibitors. TNF-alpha did not induce apoptosis in Caco-2 cells, suggesting that apoptosis was not the mechanism involved in TNF-alpha-induced increase in Caco-2 TJ permeability. These results demonstrate for the first time that TNF-alpha-induced increase in Caco-2 TJ permeability was mediated by NF-kappa B activation. The increase in permeability was associated with NF-kappa B-dependent downregulation of ZO-1 protein expression and alteration in junctional localization.  相似文献   

14.
Cingulin, a protein component of the submembrane plaque of tight junctions (TJ), contains globular and coiled-coil domains and interacts in vitro with several TJ and cytoskeletal proteins, including the PDZ protein ZO-1. Overexpression of Xenopus cingulin in transfected Xenopus A6 cells resulted in the disruption of endogenous ZO-1 localization, suggesting that cingulin functionally interacts with ZO-1. Glutathione S-transferase pull-down experiments showed that a conserved ZO-1 interaction motif (ZIM) at the NH(2) terminus of cingulin is required for cingulin-ZO-1 interaction in vitro. An NH(2)-terminal region of cingulin, containing the ZIM, was sufficient, when fused to coiled-coil sequences, to target transfected cingulin to junctions. However, deletion of the ZIM did not abolish junctional localization of transfected cingulin in A6 cells, suggesting that cingulin can be recruited to TJ through multiple protein interactions. Interestingly, the ZIM was required for cingulin recruitment into ZO-1-containing adherens junctions of Rat-1 fibroblasts, indicating that cingulin junctional recruitment does not require the molecular context of TJ. Cingulin coiled-coil sequences enhanced the junctional accumulation of expressed cingulin head region in A6 cells, but purified recombinant cingulin did not form filaments under physiological conditions in vitro, suggesting that the cingulin coiled-coil domain acts primarily by promoting dimerization.  相似文献   

15.
ZO-1, ZO-2, and ZO-3, which contain three PDZ domains (PDZ1 to -3), are concentrated at tight junctions (TJs) in epithelial cells. TJ strands are mainly composed of two distinct types of four-transmembrane proteins, occludin, and claudins, between which occludin was reported to directly bind to ZO-1/ZO-2/ZO-3. However, in occludin-deficient intestinal epithelial cells, ZO-1/ZO-2/ZO-3 were still recruited to TJs. We then examined the possible interactions between ZO-1/ZO-2/ZO-3 and claudins. ZO-1, ZO-2, and ZO-3 bound to the COOH-terminal YV sequence of claudin-1 to -8 through their PDZ1 domains in vitro. Then, claudin-1 or -2 was transfected into L fibroblasts, which express ZO-1 but not ZO-2 or ZO-3. Claudin-1 and -2 were concentrated at cell-cell borders in an elaborate network pattern, to which endogenous ZO-1 was recruited. When ZO-2 or ZO-3 were further transfected, both were recruited to the claudin-based networks together with endogenous ZO-1. Detailed analyses showed that ZO-2 and ZO-3 are recruited to the claudin-based networks through PDZ2 (ZO-2 or ZO-3)/PDZ2 (endogenous ZO-1) and PDZ1 (ZO-2 or ZO-3)/COOH-terminal YV (claudins) interactions. In good agreement, PDZ1 and PDZ2 domains of ZO-1/ZO-2/ZO-3 were also recruited to claudin-based TJs, when introduced into cultured epithelial cells. The possible molecular architecture of TJ plaque structures is discussed.  相似文献   

16.
Tight junction integral membrane proteins such as claudins and occludin are tethered to the actin cytoskeleton by adaptor proteins, notably the closely related zonula occludens (ZO) proteins ZO-1, ZO-2, and ZO-3. All three ZO proteins have recently been inactivated in mice. Although ZO-3 knockout mice lack an obvious phenotype, animals deficient in ZO-1 or ZO-2 show early embryonic lethality. Here, we rescue the embryonic lethality of ZO-2 knockout mice by injecting ZO-2(−/−) embryonic stem (ES) cells into wild-type blastocysts to generate viable ZO-2 chimera. ZO-2(−/−) ES cells contribute extensively to different tissues of the chimera, consistent with an extraembryonic requirement for ZO-2 rather than a critical role in epiblast development. Adult chimera present a set of phenotypes in different organs. In particular, male ZO-2 chimera show reduced fertility and pathological changes in the testis. Lanthanum tracer experiments show a compromised blood–testis barrier. Expression levels of ZO-1, ZO-3, claudin-11, and occludin are not apparently affected. ZO-1 and occludin still localize to the blood–testis barrier region, but claudin-11 is less well restricted and the localization of connexin-43 is perturbed. The critical role of ZO-2 for male fertility and blood–testis barrier integrity thus provides a first example for a nonredundant role of an individual ZO protein in adult mice.  相似文献   

17.
We have studied the expression of the tight junction proteins (TJ) occludin, claudin-1 and ZO-2 in the epidermis of female mice. We observed a peak of expression of these proteins at postnatal day 7 and a decrease in 6 week-old mice to values similar to those found in newborn animals. We explored if the expression of the E6 oncoprotein from high-risk human papilloma virus type 16 (HPV16) in the skin of transgenic female mice (K14E6), altered TJ protein expression in a manner sensitive to ovarian hormones. We observed that in ovariectomized mice E6 up-regulates the expression of occludin and ZO-2 in the epidermis and that this effect was canceled by 17β-estradiol. Progesterone instead induced occludin and ZO-2 over-expression. However, the decreased expression of occludin and ZO-2 induced by 17β-estradiol in the epidermis was not overturned by E6 or progesterone. In addition, we employed MDCK cells transfected with E6, and observed that ZO-2 delocalizes from TJs and accumulates in the cell nuclei due to a decrease in the turnover rate of the protein. These results reinforce the view of 17β-estradiol and E6 as risk factors for the development of cancer through effects on expression and mislocalization of TJ proteins.  相似文献   

18.
Expression of mRNAs and proteins of ZO-1 and occludin was analyzed in pig oocytes and parthenogenetic diploid embryos during preimplantation development using real-time RT-PCR, western blotting and immunocytochemistry. All germinal vesicle (GV) and metaphase (M)II oocytes and preimplantation embryos expressed mRNAs and proteins of ZO-1 and occludin. mRNA levels of both ZO-1 and occludin decreased significantly from GV to MII, but increased at the 2-cell stage followed by temporal decrease during the early and late 4-cell stages. Then, both mRNAs increased after compaction. Relative concentration of zo1α- was highest in 2-cell embryos, while zo1α+ was expressed from the morula stage. Occludin expression greatly increased after the morula stage and was highest in expanded blastocysts. Western blotting analysis showed constant expression of ZO-1α- throughout preimplantation development and limited translation of ZO-1α+ from the blastocysts, and species-specific expression pattern of occludin. Immunocytochemistry analysis revealed homogeneous distribution of ZO-1 and occludin in the cytoplasm with moderately strong fluorescence in the vicinity of the contact region between blastomeres, around the nuclei in the 2-cell to late 4-cell embryos, and clear network localization along the cell-boundary region in embryos after the morula stage. Present results show that major TJ proteins, ZO-1 and occludin are expressed in oocytes and preimplantation embryos, and that ZO-1α+ is transcribed by zygotic gene activation and translated from early blastocysts with prominent increase of occludin at the blastocyst stage.  相似文献   

19.
We characterized the sequence and protein interactions of cingulin, an M(r) 140-160-kD phosphoprotein localized on the cytoplasmic surface of epithelial tight junctions (TJ). The derived amino acid sequence of a full-length Xenopus laevis cingulin cDNA shows globular head (residues 1-439) and tail (1,326-1,368) domains and a central alpha-helical rod domain (440-1,325). Sequence analysis, electron microscopy, and pull-down assays indicate that the cingulin rod is responsible for the formation of coiled-coil parallel dimers, which can further aggregate through intermolecular interactions. Pull-down assays from epithelial, insect cell, and reticulocyte lysates show that an NH(2)-terminal fragment of cingulin (1-378) interacts in vitro with ZO-1 (K(d) approximately 5 nM), ZO-2, ZO-3, myosin, and AF-6, but not with symplekin, and a COOH-terminal fragment (377-1,368) interacts with myosin and ZO-3. ZO-1 and ZO-2 immunoprecipitates contain cingulin, suggesting in vivo interactions. Full-length cingulin, but not NH(2)-terminal and COOH-terminal fragments, colocalizes with endogenous cingulin in transfected MDCK cells, indicating that sequences within both head and rod domains are required for TJ localization. We propose that cingulin is a functionally important component of TJ, linking the submembrane plaque domain of TJ to the actomyosin cytoskeleton.  相似文献   

20.
《The Journal of cell biology》1994,127(6):1617-1626
Occludin is an integral membrane protein localizing at tight junctions (TJ) with four transmembrane domains and a long COOH-terminal cytoplasmic domain (domain E) consisting of 255 amino acids. Immunofluorescence and laser scan microscopy revealed that chick full- length occludin introduced into human and bovine epithelial cells was correctly delivered to and incorporated into preexisting TJ. Further transfection studies with various deletion mutants showed that the domain E, especially its COOH-terminal approximately 150 amino acids (domain E358/504), was necessary for the localization of occludin at TJ. Secondly, domain E was expressed in Escherichia coli as a fusion protein with glutathione-S-transferase, and this fusion protein was shown to be specifically bound to a complex of ZO-1 (220 kD) and ZO-2 (160 kD) among various membrane peripheral proteins. In vitro binding analyses using glutathione-S-transferase fusion proteins of various deletion mutants of domain E narrowed down the sequence necessary for the ZO-1/ZO-2 association into the domain E358/504. Furthermore, this region directly associated with the recombinant ZO-1 produced in E. coli. We concluded that occludin itself can localize at TJ and directly associate with ZO-1. The coincidence of the sequence necessary for the ZO-1 association with that for the TJ localization suggests that the association with underlying cytoskeletons through ZO-1 is required for occludin to be localized at TJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号