首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerase preferentially inserts purine nucleotides opposite non-instructive lesions such as abasic sites during DNA replication. In order to elucidate the mechanism of the preferential insertion, a DNA template containing a model abasic site and primers containing 4 different nucleotides (A,G,C,T) at primer terminus were synthesized. The stability of the primer terminus nucleotide placed opposite the abasic site was evaluated on the basis of its sensitivity to 3'-5' exonuclease associated with DNA polymerase.  相似文献   

2.
Polyacrylamide gel electrophoresis of DNA fragments obtained by the polymerase chain reaction using Taq polymerase revealed the presence of multiple fragments shorter than the expected product. These abortive extension products were observed even when analysis by agarose gel electrophoresis showed only a single band. The production of prematurely terminated fragments can be exploited for the sequencing of PCR products if phosphorothioate groups are incorporated base specifically during the reaction in the presence of two oligonucleotide primers, one of which is 5'-32P-labeled. The addition of snake venom phosphodiesterase to the reaction mixture after completion of the amplification cycles digests each fragment from the 3'-end to a phosphorothioate group so that the sequence can be read by polyacrylamide gel electrophoresis.  相似文献   

3.
Synthetic oligo(ribo-deoxyribo)nucleotides were analyzed and characterized by different solid-phase chemical degradation procedures, 5'- and 3'-end labelled mixed fragments were degraded by a slightly modified DNA cleavage procedure using 1 and 10% piperidine for the chain scission reaction and CCS anion-exchange paper. Besides the normal degradation products obtained by the usual modification and strand cleavage reactions of both deoxy- and ribonucleotide residues, additional bands were identified in the sequence patterns resulting from the hydrolysis of the RNA moiety induced by piperidine. Since both degradation reactions cleave the backbone of the mixed DNA-RNA fragments differently and produce nucleotide components with different charges, the degradation products do not interfere and can be resolved by gel electrophoresis on polyacrylamide. In addition, 3'-end labelled DNA-RNA oligomers were degraded by a RNA cleavage procedure using DE 81 anion-exchange paper as solid support. The combination of all three degradation methods allows to confirm the nucleotide sequence.  相似文献   

4.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

5.
DNA primase-DNA polymerase alpha, purified 53,000-fold from CV-1 cells, synthesized predominantly (p)ppA(pA)6-primed DNA on a poly(dT) template. About 80% of the RNA primers synthesized on an M13 DNA template were (p)ppA/G(pN)5-7, and 20% were (p)ppA/G(pN)0-4. RNA primer size was determined by gel electrophoresis after removing nascent DNA with phage T4 DNA polymerase 3'-5' exonuclease, leaving a single dNMP at the 3'-end of the RNA primer, and the terminal 5'-(p)ppN residue was determined by "capping" with [alpha-32P]GTP using vaccinia guanylyl-transferase. The processivity of DNA synthesis initiated by de novo synthesis of RNA primers was the same as that initiated on pre-existing RNA primers (10-15 dNMPs), although initiation on pre-existing primers was strongly preferred. Primers always began with A or G, even at high levels of CTP or UTP, although the ratio of A to G varied from 4:1 to 1:1 depending on the relative concentrations of ATP and GTP in the assay. ATP and GTP had no effect on primer length, but the fraction of shorter RNA primers increased 2-fold with higher concentrations of CTP or UTP. Nearest-neighbor analysis revealed a preference for purine ribonucleotides at RNA covalently linked to the 5'-end of DNA (RNA-p-DNA) junctions, and increasing the concentration of a single rNTP increased slightly its presence at RNA-p-DNA junctions. Thus, the base composition and size of RNA primers synthesized by DNA primase-DNA polymerase alpha is modulated by the relative concentrations of ribonucleoside triphosphates.  相似文献   

6.
A new approach to the chemical synthesis of oligodeoxynucleotides bearing reporter functional groups at base residues of 3'-end nucleosides is reported. Applications of the 3'-end fluorescently labelled primers for automated DNA sequencing are shown.  相似文献   

7.
This protocol describes the design and execution of monoplex and multiplex linear-after-the-exponential (LATE)-PCR assays using a novel reagent, PrimeSafe, that suppresses all forms of mispriming. LATE-PCR is an advanced form of asymmetric amplification that uses a limiting primer and an excess primer for efficient exponential amplification of double-stranded DNA, followed by linear amplification of one strand. Each single-stranded amplicon can be quantitatively detected in real time or at end point. By separating primer annealing from product detection, LATE-PCR enables product analysis at low temperatures. Alternatively, each single strand can be sequenced by a convenient Dilute-'N'-Go procedure. Amplified samples are diluted with individual sequencing primers without the use of columns or spins. We have amplified and then sequenced 15 different single-stranded products generated in a single multiplexed LATE-PCR comprised of 15 pairs of unrelated primers. Dilute-'N'-Go dideoxy sequencing is more convenient, faster and less expensive than sequencing double-stranded amplicons generated via conventional symmetric PCR. The preparation of LATE-PCR products for Dilute-'N'-Go sequencing takes only 30 seconds.  相似文献   

8.
We employ NMR structure determination, thermodynamics, and enzymatics to uncover the structural, thermodynamic and enzymatic properties of alpha/beta-ODNs containing 3'-3' and 5'-5' linkages. RNase H studies show that alpha/beta-gapmers that are designed to target erbB-2 efficiently elicit RNase H activity. NMR structures of DNA.DNA and DNA.RNA duplexes reveal that single alpha-anomeric residues fit well into either duplex, but alter the dynamic properties of the backbone and deoxyriboses as well as the topology of the minor groove in the DNA.RNA hybrid.  相似文献   

9.
Naureckiene S  Holloman WK 《Biochemistry》1999,38(43):14379-14386
The REC1 gene of Ustilago maydis functions in the maintenance of genome stability as evidenced by the mutator phenotype resulting from inactivation of the gene. The biochemical function of the Rec1 protein was previously identified as a 3'-5'-directed DNA exonuclease. Here studies on the mechanism of action of Rec1 were performed using radiolabeled oligonucleotide DNAs as substrates, enabling detection of single cleavage events after electrophoresis on DNA sequencing gels. The oligonucleotides that were utilized were designed to be self-annealing so that they formed hairpin structures. This simplified interpretation of the data since each molecule contained only one 3'-terminus. Analysis revealed that digestion proceeded by a distributive mode of action and that degradation of DNA was governed by an interplay between sequence context and conformation. The preferential substrate was DNA with a recessed 3'-end. It was discovered that the enzyme had abasic endonuclease activity, was capable of initiating at an internal nick, and had no preference for mismatched bases either internally or terminally. Endonucleolytic cleavage was 5' to the abasic site.  相似文献   

10.
A variety of approaches that utilize in vitro 32P-labeling of RNA and of oligonucleotides in the sequence analysis of RNAs are described. These include 1) methods for 5'- and 3'- end labeling of RNAs; 2) end labeling and sequencing of oligonucleotides present in complete T1 RNase or pancreatic RNase digests of RNA; 3) use of random endonucleases, such as nuclease P1, for terminal sequence analysis of end labeled RNAs; and 4) use of base specific enzymes or chemical reagents in the sequence analysis of end-labeled RNAs. Also described is an approach to RNA sequencing, applied so far to tRNAs, which is based on partial and random alkaline cleavage of an RNA to generate a series of overlapping oligonucleotide fragments, all containing the original 3'-end of the RNA. Analysis of the 5'- end group of each of these oligonucleotides (following 5'-end labeling with 32P) provides the sequence of most of the tRNA. The above methods have been used to derive the sequences of several tRNAs, the ribosomal 5S and 5 x 8S RNAs, a viroid RNA, and large segments of both prokaryotic and eukaryotic ribosomal and messenger RNAs.  相似文献   

11.
We report a highly sensitive method to quantify abasic sites and deoxyribose oxidation products arising in damaged DNA. The method exploits the reaction of aldehyde- and ketone-containing deoxyribose oxidation products and abasic sites with [(14)C]methoxyamine to form stable oxime derivatives, as originally described by Talpaert-Borle and Liuzzi [Reaction of apurinic/apyrimidinic sites with [(14)C]methoxyamine. A method for the quantitative assay of AP sites in DNA, Biochim. Biophys. Acta 740 (1983) 410-416]. The sensitivity of the method was dramatically improved by the application of accelerator mass spectrometry to quantify the (14)C, with a limit of detection of 1 lesion in 10(6) nucleotides in 1 microg of DNA. The method was validated using DNA containing a defined quantity of abasic sites, with a >0.95 correlation between the quantities of abasic sites and those of methoxyamine labels. The original applications of this and similar oxyamine derivatization methods have assumed that abasic sites are the only aldehyde-containing DNA damage products. However, deoxyribose oxidation produces strand breaks and abasic sites containing a variety of degradation products with aldehyde and ketone moieties. To assess the utility of methoxyamine labeling for quantifying strand breaks and abasic sites, the method was applied to plasmid DNA treated with gamma-radiation and peroxynitrite. For gamma-radiation, there was a 0.99 correlation between the quantity of methoxyamine labels and the quantity of strand breaks and abasic sites determined by a plasmid nicking assay; the abasic sites comprised less than 10% of the radiation-induced DNA damage. Studies with peroxynitrite demonstrate that the method, in conjunction with DNA repair enzymes that remove damaged bases to produce aldehydic sugar residues or abasic sites, is also applicable to quantifying nucleobase lesions in addition to strand break products. Compared to other abasic site quantification techniques, the modified method offers the advantage of providing a straightforward and direct measurement of aldehyde- and ketone-containing strand breaks and abasic sites, with the potential for direct labeling in cells prior to DNA isolation.  相似文献   

12.
13.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

14.
The use of nuclease P1 in sequence analysis of end group labeled RNA.   总被引:61,自引:41,他引:20       下载免费PDF全文
A method is described for the direct sequence analysis of 20-25 nucleotides from the termini of 5'- or 3'-end-group [32P] labeled RNA. The method involves partial endonucleolytic digestion of the labeled RNA with nuclease P1 (from Penicillium citrinum) followed by separation of the partial digestion products by two-dimensional homochromatography, the nucleotide sequence being determined by mobility shift analysis. This procedure has been applied to the sequence analysis of the terminal regions of tRNAs and of high molecular weight RNA, such as messenger RNA or viral RNA. A further application involves its use in conjunction with snake venom phosphodiesterase to determine the sequence of 5'-end group labeled oligonucleotides, containing modified bases, derived from T1 or pancreatic RNase digestion of tRNA.  相似文献   

15.
Sequence analysis of 5'-[32P] labeled tRNA and eukaryotic mRNA using an adaptation of a method recently described by Donis-Keller, Maxam and Gilbert for mapping guanines, adenines and pyrimidines from the 5'-end of an RNA is described. In addition, a technique utilizing two-dimensional polyacrylamide gel electrophoresis for identification of pyrimidines within a sequence is described. 5'-[32P] Labeled rabbit beta-globin mRNA and N. crassa mitochondrial initiator tRNA were partially digested with T1- RNase for cleavage at G residues, with U2-RNase for cleavage at A residues, with an extracellular RNase from B. cereus for cleavage at pyrimidine residues and with T2-RNase or with alkali for cleavage at all four residues. The 5'-[32P] labeled partial digestion products were separated according to their size, by electrophoresis in adjacent lanes of a polyacrylamide slab gel and the location of G's, A's and of pyrimidines extending 60-80 nucleotides from the 5'-end of the RNA determined. Two-dimensional polyacrylamide gel electrophoresis was used to separate the 5'-[32P] labeled fragments present in partial alkali digests of a 5'-[32P] labeled mRNA. The mobility shifts corresponding to the difference of a C residue were distinct from those corresponding to a U residue and this formed the basis of a method for distinguishing between the pyrimidines.  相似文献   

16.
Xu W  Zhai Z  Huang K  Zhang N  Yuan Y  Shang Y  Luo Y 《PloS one》2012,7(1):e22900
In this study, a novel universal primer-multiplex-PCR (UP-M-PCR) method adding a universal primer (UP) in the multiplex PCR reaction system was described. A universal adapter was designed in the 5'-end of each specific primer pairs which matched with the specific DNA sequences for each template and also used as the universal primer (UP). PCR products were analyzed on sequencing gel electrophoresis (SGE) which had the advantage of exhibiting extraordinary resolution. This method overcame the disadvantages rooted deeply in conventional multiplex PCR such as complex manipulation, lower sensitivity, self-inhibition and amplification disparity resulting from different primers, and it got a high specificity and had a low detection limit of 0.1 ng for single kind of crops when screening the presence of genetically modified (GM) crops in mixture samples. The novel developed multiplex PCR assay with sequencing gel electrophoresis analysis will be useful in many fields, such as verifying the GM status of a sample irrespective of the crop and GM trait and so on.  相似文献   

17.
The 20-mer bridged oligodeoxynucleotides containing short oligomers joined by the hexamethylenediol and hexaethylene glycol linkers were shown to form complementary DNA/DNA and RNA/DNA complexes whose thermostability depends on the length and number of the nonnucleotide linkers. Hybrid complexes of the bridged oligonucleotides proved to be substrates for the E. coli ribonuclease H. The presence of one-three nonnucleotide linkers in a 20-mer decreased the hydrolysis efficacy only 1.2-1.4-fold. It is the composition of the RNA cleavage products that was influenced the most significantly by the nonnucleotide linkers. RNase H simultaneously hydrolyzed the RNA 3'-ends of each hybrid duplex involving a bridged oligonucleotide. The presence of an inverted 3'-3'-phosphodiester bond at the 3'-end of the oligodeoxyribonucleotide only slightly affected the RNase H activity.  相似文献   

18.
19.
The DNA sequence specificity of stimulation of DNA polymerases by factor D   总被引:1,自引:0,他引:1  
The mechanism of enhancement of DNA polymerase activity by the murine DNA-binding protein factor D was investigated. Extension by Escherichia coli DNA polymerase I and calf thymus DNA polymerase-alpha of 5'-32P-labeled oligodeoxynucleotide primers that are complementary to poly(dT) or to bacteriophage M13 DNA was measured in the absence or presence of factor D. With 5'-[32P](dA)9.poly(dT), factor D enables E. coli polymerase I to fill approximately 15-nucleotide gaps between adjacent primers; whereas in the absence of the stimulatory protein, poly(dT) is not copied significantly. In order to study the nucleotide specificity of synthesis enhancement, we used M13mp10 DNA containing 4 consecutive thymidine residues downstream from the 3-hydroxyl terminus of an oligonucleotide primer. Upon addition of factor D, both polymerase I and polymerase-alpha can traverse this sequence more efficiently and thus generate longer DNA products. Densitometric analysis of nonextended and elongated 5'-32P-labeled M13 primer indicates that, without changing the frequency of primer utilization, factor D enhances the activity of these DNA polymerases by increasing their apparent processivity. By positioning oligonucleotide primers 4, 8, and 12 bases upstream from the (dT)4 template sequence, we show that the enhancement of synthesis by factor D is independent of the position of the oligothymidine cluster. We hypothesize that factor D interacts with oligo(dT).oligo(dA) domains in DNA to alter their conformation, which may normally obstruct the progression of DNA polymerases.  相似文献   

20.
DNA copies of the potato virus X (PVX) RNA corresponding to 2300 nucleotides at the 3'-end have been cloned. The cloned cDNA copies containing the nucleotides 445-1280 from the 3'-end have been sequenced. The 5'-terminal region of the PVX coat protein gene corresponds to residues 445-786 from the 3'-end. The amino acid sequences of two more open reading frames (ORF) have been deduced from the nucleotide sequence. The potential translation products of these ORF's would correspond to the nonstructural viral proteins. We have located the ORF1 within the region of residues 799-1009 preceding the coat protein cistron. The tentative protein is composed of 70 amino acids and has an aminoterminal segment which is markedly hydrophobic. ORF2 in the PVX sequence ends with UAG at nucleotides 942-944 and extends to the 5'-terminus for additional 340 nucleotides. The distant sequence homology exists between a carboxyterminal portion of PVX ORF2 and that of the nonstructural "30 K-proteins" of the plant tobamoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号