首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch pathway genes are expressed in mammalian ovarian follicles.   总被引:1,自引:0,他引:1  
Folliculogenesis is the process of development of ovarian follicles that ultimately results in the release of fertilizable oocytes at ovulation. This is a complex program that involves the proliferation and differentiation of granulosa cells. Granulosa cells are necessary for follicle growth and support the oocyte during folliculogenesis. Genes that regulate the proliferation and differentiation of granulosa cells are beginning to be elucidated. In this study, the expression patterns of Notch receptor genes and their ligands, which have been shown to regulate cell-fate decisions in many systems during development, were examined in the mammalian ovary. In situ hybridization data showed that Notch2, Notch3, and Jagged2 were expressed in an overlapping pattern in the granulosa cells of developing follicles. Jagged1 was expressed in oocytes exclusively. Downstream target genes of Notch also were expressed in granulosa cells. These data implicate the Notch signaling pathway in the regulation of mammalian folliculogenesis.  相似文献   

2.
Lunatic fringe is a vertebrate homologue of Drosophila fringe, which plays an important role in modulating Notch signaling. This study examines the distribution of chick lunatic fringe at sites of neural crest formation and explores its possible function by ectopic expression. Shortly after neural tube closure, lunatic fringe is expressed in most of the neural tube, with the exception of the dorsal midline containing presumptive neural crest. Thus, there is a fringe/non-fringe border at the site of neural crest production. Expression of excess lunatic fringe in the cranial neural tube and neural crest by retrovirally mediated gene transfer resulted in a significant increase ( approximately 60%) in the percentage of cranial neural crest cells 1 day after infection. This effect was mediated by an increase in cell division as assayed by BrdU incorporation. Infected embryos had an up-regulation of Delta-1 in the dorsal neural tube and redistribution of Notch-1 to the lumen of the neural tube, confirming that excess fringe modulates Notch signaling. These findings point to a novel role for lunatic fringe in regulating cell division and/or production of neural crest cells by the neural tube.  相似文献   

3.
Progress in research on initiation of folliculogenesis has progressed slowly because of a lack of markers for early folliculogenesis. The rabbit zona pellucida protein (ZP1) is synthesized in follicles during early stages of folliculogenesis. In order to establish ZP1 as a marker for initiation of folliculogenesis, in situ hybridization was used to localize ZP1 mRNA in immature follicles. ZP1 mRNA was first detected in oocytes of some but not all primordial follicles. The primordial follicles expressing ZP1 mRNA were located at the cortico-medullary junction, indicating that they were newly activated follicles. ZP1 mRNA accumulated in oocytes of intermediate, primary, and secondary follicles. In contrast, ZP1 mRNA was first detectable in granulosa cells of intermediate follicles and is present in cuboidal granulosa cells of primary and early secondary follicles, but was undetectable in granulosa cells of more mature follicles. These data demonstrate that 1) ZP1 mRNA is expressed in both oocytes and granulosa cells, 2) ZP1 mRNA is initially expressed in oocytes of activated follicles, and 3) ZP1 mRNA is transiently expressed in granulosa cells during early stages of folliculogenesis. Therefore, rabbit ZP1 is a molecular marker that can be used in future studies to measure initiation of folliculogenesis.  相似文献   

4.
The formation of boundaries is a fundamental organizing principle during development. The Notch signalling pathway regulates this developmental patterning mechanism in many tissues. Recent data suggest that Notch receptors are involved in boundary determination during odontogenesis. It remains, however, uncertain if other components of the Notch pathway are also important for compartmental lineage restrictions in teeth. Here we report on the expression of the Lunatic fringe gene, which encodes a secreted signalling molecule regulating the Notch pathway, during the development of mouse teeth. Lunatic fringe is expressed in both epithelial and mesenchymal components of the developing molar. The expression pattern of Lunatic fringe in the epithelium is complementary to that of the Notch receptors. Lunatic fringe is asymmetrically expressed in the incisor epithelium during its antero-posterior rotation. This expression pattern defines the lingual comportment of the incisor epithelium whereas the labial comportment is defined by Notch2 expression.  相似文献   

5.
The similarities and differences in molecular mechanisms regulating invertebrate and mammalian folliculogenesis are starting to be deciphered. In Drosophila, the neoplastic tumor suppressor gene discslarge is crucial for suppressing proliferation and movement of follicle cells relative to the growing oocyte. Lethal giant larvae and scribble play similar roles and have been suggested to collaborate intimately with discslarge. We have identified and determined the expression pattern of murine homologs of these Drosophila genes. In situ data shows that murine discslarge-1, discslarge-3, discslarge-4, lethal giant larvae, and scribble are expressed in both overlapping and distinct patterns in oocytes and granulosa cells in maturing follicles. Disclarge-4 is expressed in the surface epithelium and is lost in mouse carcinogenic surface epithelial cells. All of these genes, as well as discslarge-2 and discslarge-5, are expressed in human ovaries. Our data suggests that as in Drosophila, these tumor suppressors may cooperate during mammalian folliculogenesis, but also have distinct functions.  相似文献   

6.
Characterization of integrin expression in the mouse ovary   总被引:7,自引:0,他引:7  
Integrin alpha:beta heterodimers mediate cell contacts to the extracellular matrix and initiate intracellular signaling cascades in response to a variety of factors. Integrins interact with many determinants of cellular phenotypes and play roles in controlling the development, structural integrity, and function of every type of tissue. Despite their importance, little is known about the regulation of integrin subunits in the mammalian ovary and how they function in folliculogenesis. To determine their relevance to ovarian physiology, we have studied the expression of integrin subunit mRNAs by Northern blot analysis and in situ hybridization in ovaries of wild-type, growth differentiation factor 9 (Gdf 9) knockout, FSHbeta (Fshb) knockout, and inhibin alpha (Inha) knockout mice. Integrin alpha6 mRNA is expressed in oocytes and granulosa cells of single-layer follicles and in oocytes and theca cells of multilayer follicles. Integrin alpha6 is highly expressed in Gdf 9 knockout ovaries, which are enriched in oocytes and primary (single layer) follicles because of a block at this stage of follicular development. Integrin alpha(v) mRNA is most highly expressed in the granulosa cells of multilayer growing follicles, and therefore only low levels of expression are detectable in the Gdf 9 knockout ovaries. Integrin beta1 mRNA exhibits a broad expression pattern in ovaries, including oocytes, granulosa cells, theca cells, and corpora lutea. Integrin beta3 mRNA is expressed in theca and interstitial cells and is upregulated in corpora lutea. It is nearly undetectable in ovaries of Fshb knockout mice, which develop preantral follicles but have no luteal cells. Integrin beta5 mRNA is predominantly expressed in granulosa cells of multilayer follicles. It is expressed at high levels in the Fshb knockout mice and in a compartmentalized manner in the granulosa cell/Sertoli cell tumors that develop in the Inha knockout mice. Specific integrins are associated with ovarian cellular phenotypes in mice, which raises intriguing possibilities as to integrin functions in oocyte competence, follicular development, luteinization, and granulosa cell proliferation.  相似文献   

7.
Fringe O-fucose-beta1,3-N-acetylglucosaminyltransferases modulate Notch signaling by potentiating signaling induced by Delta-like ligands, while inhibiting signaling induced by Serrate/Jagged1 ligands. Based on binding studies, the differential effects of Drosophila fringe (DFng) on Notch signaling are thought to result from alterations in Notch glycosylation that enhance binding of Delta to Notch but reduce Serrate binding. Here, we report that expression of mammalian fringe proteins (Lunatic [LFng], Manic [MFng], or Radical [RFng] Fringe) increased Delta1 binding and activation of Notch1 signaling in 293T and NIH 3T3 cells. Although Jagged1-induced signaling was suppressed by LFng and MFng, RFng enhanced signaling induced by either Delta1 or Jagged1, underscoring the diversity of mammalian fringe glycosyltransferases in regulating signaling downstream of different ligand-receptor combinations. Interestingly, suppression of Jagged1-induced Notch1 signaling did not correlate with changes in Jagged1 binding as found for Delta1. Our data support the idea that fringe glycosylation increases Delta1 binding to potentiate signaling, but we propose that although fringe glycosylation does not reduce Jagged1 binding to Notch1, the resultant ligand-receptor interactions do not effectively promote Notch1 proteolysis required for activation of downstream signaling events.  相似文献   

8.
Both neurons and glia of the PNS are derived from the neural crest. In this study, we have examined the potential function of lunatic fringe in neural tube and trunk neural crest development by gain-of-function analysis during early stages of nervous system formation. Normally lunatic fringe is expressed in three broad bands within the neural tube, and is most prominent in the dorsal neural tube containing neural crest precursors. Using retrovirally-mediated gene transfer, we find that excess lunatic fringe in the neural tube increases the numbers of neural crest cells in the migratory stream via an apparent increase in cell proliferation. In addition, lunatic fringe augments the numbers of neurons and upregulates Delta-1 expression. The results indicate that, by modulating Notch/Delta signaling, lunatic fringe not only increases cell division of neural crest precursors, but also increases the numbers of neurons in the trunk neural crest.  相似文献   

9.
10.
Boundary formation plays a central role in differentiating the flanking regions that give rise to discrete tissues and organs during early development. We have studied mechanisms by which a morphological boundary and tissue separation are regulated by examining chicken somite segmentation as a model system. By transplanting a small group of cells taken from a presumptive border into a non-segmentation site, we have found a novel inductive event where posteriorly juxtaposed cells to the next-forming border instruct the anterior cells to become separated and epithelialized. We have further studied the molecular mechanisms underlying these interactions by focusing on Lunatic fringe, a modulator of Notch signaling, which is expressed in the region of the presumptive boundary. By combining DNA in ovo electroporation and embryonic transplantation techniques we have ectopically made a sharp boundary of Lunatic fringe activity in the unsegmented paraxial mesoderm and observed a fissure formed at the interface. In addition, a constitutive active form of Notch mimics this instructive phenomenon. These suggest that the boundary-forming signals emanating from the posterior border cells are mediated by Notch, the action of which is confined to the border region by Lunatic fringe within the area where mRNAs of Notch and its ligand are broadly expressed in the presomitic mesoderm.  相似文献   

11.
During the early stages of oogenesis, oocyte-specific factors, synthesized by and stored within the oocyte, play critical roles during oogenesis, folliculogenesis, fertilization and early embryonic development in the mouse. The identification of marsupial maternal factors, expressed specifically in the ovary or oocyte, may provide an insight into the conserved evolutionary mechanisms that drive mammalian oocyte development to cleavage stages. In this study, 10 clones including dunnart ZP2 and c-mos, isolated by cDNA representational difference analysis, were validated by RT-PCR for ovary-specific expression. This novel combination of techniques to isolate ovary-specific genes has identified three novel genes with ovary-specific expression. Both dunnart ZP2 and c-mos exhibited ovary-specific expression, making this study the first isolation of c-mos in a marsupial species. Dunnart ZP2 expression was examined in detail by in situ hybridization and results indicate oocyte-specific expression of dunnart ZP2 in the cytoplasm of oocytes of primordial, primary and secondary follicles with expression being highest in oocytes of primary follicles. ZP2 was not expressed in granulosa cells of any follicles.  相似文献   

12.
The ovarian follicle in mammals is a functional syncytium, with the oocyte being coupled with the surrounding cumulus granulosa cells, and the cumulus cells being coupled with each other and with the mural granulosa cells, via gap junctions. The gap junctions coupling granulosa cells in mature follicles contain several different connexins (gap junction channel proteins), including connexins 32, 43, and 45. Connexin43 immunoreactivity can be detected from the onset of folliculogenesis just after birth and persists through ovulation. In order to assess the importance of connexin43 gap junctions for postnatal folliculogenesis, we grafted ovaries from late gestation mouse fetuses or newborn pups lacking connexin43 (Gja1(-)/Gja1(-)) into the kidney capsules of adult females and allowed them to develop for up to 3 weeks (this was necessitated by the neonatal lethality caused by the mutation). By the end of the graft period, tertiary (antral) follicles had developed in grafted normal (wild-type or heterozygote) ovaries. Most follicles in Gja1(-)/Gja1(-) ovaries, however, failed to become multilaminar, with the severity of the effect depending on strain background. Dye transfer experiments indicated that intercellular coupling between granulosa cells is reduced, but not abolished, in the absence of connexin43, consistent with the presence of additional connexins. These results suggest that coupling between granulosa cells mediated specifically by connexin43 channels is required for continued follicular growth. Measurements of oocyte diameters revealed that oocyte growth in mutant follicles is retarded, but not arrested, despite the arrest of folliculogenesis. The mutant follicles are morphologically abnormal: the zona pellucida is poorly developed, the cytoplasm of both granulosa cells and oocytes is vacuolated, and cortical granules are absent from the oocytes. Correspondingly, the mutant oocytes obtained from 3-week grafts failed to undergo meiotic maturation and could not be fertilized, although half of the wild-type oocytes from 3-week grafted ovaries could be fertilized. We conclude that connexin43-containing gap junction channels are required for expansion of the granulosa cell population during the early stages of follicular development and that failure of the granulosa cell layers to develop properly has severe consequences for the oocyte.  相似文献   

13.
Classical and atypical cadherins mediate calcium-dependent cell adhesion and play an important role in morphogenetic processes. We have shown, previously, N- and E-cadherin expression in the rat ovary. This expression, however, was not associated with specific follicle-restructuring events such as antrum formation and segregation of mural from cumulus granulosa cells suggesting that other cadherins may serve this function. In this study, RT-PCR and immunostaining techniques showed that three other cadherins are expressed throughout prepubertal ovarian development in the rat: one classical (P-) cadherin, and two atypical (K- and OB-) cadherins. RT-PCR analysis of isolated ovarian tissue compartments (granulosa cells and the residual ovarian tissue) agreed with the immunostaining results. Immunostaining showed P- and K-cadherin expression by granulosa, as well as thecal/interstitial cells, and also in oocytes of primordial follicles. P-cadherin expression was absent in oocytes of follicles in later stages of development compared to K-cadherin, which was found in oocytes at all stages of folliculogenesis. P-, K-, and OB-cadherin were expressed by the ovarian surface epithelial cells of neonatal animals but only P- and OB-cadherin expression were maintained in these cells in 25 day-old animals. Cellular OB-cadherin staining was absent in follicles at all stages of development and its expression was restricted to the ovarian hilar region and portions of the stroma. In summary, cadherin expression and distribution profiles changed during ovarian growth and folliculogenesis suggesting a role for cadherins in organizational and morphogenetic processes within the developing rat ovary.  相似文献   

14.
In mammals, the primordial follicle pool represents the entire reproductive potential of a female. The transforming growth factor-β (TGF-β) family member activin (ACT) contributes to folliculogenesis, although the exact mechanism is not known. The role of FST288, the strongest ACT-neutralizing isoform of follistatin (FST), during cyst breakdown and primordial follicle formation in the fetal mice ovary was assessed using an in vitro culture system. FST was continuously expressed in the oocytes as well as the cuboidal granulosa cells of growing follicles in perinatal mouse ovaries. Treatment with FST288 delayed germ cell nest breakdown, particularly near the periphery of the ovary, and dramatically decreased the percentage of primordial follicles. In addition, there was a dramatic decrease in proliferation of granulosa cells and somatic cell expression of Notch signaling was impaired. In conclusion, FST288 impacts germ cell nest breakdown and primordial follicle assembly by inhibiting somatic cell proliferation.  相似文献   

15.
Three mammalian fringe proteins are implicated in controlling Notch activation by Delta/Serrate/Lag2 ligands during tissue boundary formation. It was proved recently that they are glycosyltransferases that initiate elongation of O-linked fucose residues attached to epidermal growth factor-like sequence repeats in the extracellular domain of Notch molecules. Here we demonstrate the existence of functional diversity among the mammalian fringe proteins. Although both manic fringe (mFng) and lunatic fringe (lFng) decreased the binding of Jagged1 to Notch2 and not that of Delta1, the decrease by mFng was greater in degree than that by lFng. We also found that both fringe proteins reduced Jagged1-triggered Notch2 signaling, whereas neither affected Delta1-triggered Notch2 signaling. However, the decrease in Jagged1-triggered Notch2 signaling by mFng was again greater than that by lFng. Furthermore, we observed that each fringe protein acted on a different site of the extracellular region of Notch2. Taking these findings together, we propose that the difference in modulatory function of multiple fringe proteins may result from the distinct amino acid sequence specificity targeted by these glycosyltransferases.  相似文献   

16.
17.
Although it is well established that both follicular assembly and the initiation of follicle growth in the mammalian ovary occur independently of pituitary hormone support, the factors controlling these processes remain poorly understood. We now report that neurotrophins (NTs) signaling via TrkB receptors are required for the growth of newly formed follicles. Both neurotrophin-4/5 (NT-4) and brain-derived neurotrophic factor (BDNF), the preferred TrkB ligands, are expressed in the infantile mouse ovary. Initially, they are present in oocytes, but this site of expression switches to granulosa cells after the newly assembled primordial follicles develop into growing primary follicles. Full-length kinase domain-containing TrkB receptors are expressed at low and seemingly unchanging levels in the oocytes and granulosa cells of both primordial and growing follicles. In contrast, a truncated TrkB isoform lacking the intracellular domain of the receptor is selectively expressed in oocytes, where it is targeted to the cell membrane as primary follicles initiate growth. Using gene-targeted mice lacking all TrkB isoforms, we show that the ovaries of these mice or those lacking both NT-4 and BDNF suffer a stage-selective deficiency in early follicular development that compromises the ability of follicles to grow beyond the primary stage. Proliferation of granulosa cells-required for this transition-and expression of FSH receptors (FSHR), which reflects the degree of biochemical differentiation of growing follicles, are reduced in trkB-null mice. Ovaries from these animals grafted under the kidney capsule of wild-type mice fail to sustain follicular growth and show a striking loss of follicular organization, preceded by massive oocyte death. These results indicate that TrkB receptors are required for the early growth of ovarian follicles and that they exert this function by primarily supporting oocyte development as well as providing granulosa cells with a proliferative signal that requires oocyte-somatic cell bidirectional communication. The predominance of truncated TrkB receptors in oocytes and their developmental pattern of subcellular expression suggest that a significant number of NT-4/BDNF actions in the developing mammalian ovary are mediated by these receptors.  相似文献   

18.
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (beta-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1alpha) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (alpha-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.  相似文献   

19.
Sirard MA  Coenen K 《Theriogenology》1993,40(5):933-942
To prolong the culture of oocytes, it is essential to know how the follicle maintains meiotic arrest. This study was undertaken to evaluate the short-term effects (24 h) of the co-culture of follicular hemi-sections, including theca and granulosa cells, with cumulus-enclosed primary oocytes on meiotic resumption. Bovine oocytes were collected from 1 to 5-mm follicles from ovaries kept at 35 degrees C. Follicular hemi-sections were prepared by careful dissection of another group of follicles of the same size but from ovaries transported on ice. Following 24 h of co-culture, the oocytes were either fixed for determination of nuclear maturation or matured for an additional 24 h to evaluate reversibility of inhibition. The inhibitory action of the hemi-sections on meiotic resumption of oocytes was directly related to the amount of tissue and did not require direct physical contact between the cumulus and the follicular wall. The inhibition was reversible after 24 h of co-culture. Therefore, follicular tissue can be used to maintain meiotic arrest for at least 24 h, thus allowing for the study of changes in developmental competence during late folliculogenesis.  相似文献   

20.
Growth differentiation factor-9 (GDF-9), a secreted member of the transforming growth factor-beta superfamily, is expressed at high levels in the mammalian oocyte beginning at the type 3a primary follicle stage. We have previously demonstrated that GDF-9-deficient female mice are infertile because of an early block in folliculogenesis at the type 3b primary follicle stage. To address the molecular defects that result from the absence of GDF-9, we have analyzed the expression of several important ovarian marker genes. The major findings of our studies are as follows: 1) There are no detectable signals around GDF-9-deficient follicles for several theca cell layer markers [i.e. 17alpha-hydroxylase, LH receptor (LHR), and c-kit, the receptor for kit ligand]. This demonstrates that in the absence of GDF-9, the follicles are incompetent to emit a signal that recruits theca cell precursors to surround the follicle; 2) The primary follicles of GDF-9-deficient mice demonstrate an up-regulation of kit ligand and inhibin-alpha. This suggests that these two important secreted growth factors, expressed in the granulosa cells, may be directly regulated in a paracrine fashion by GDF-9. Up-regulation of kit ligand, via signaling through c-kit on the oocyte, may be directly involved in the increased size of GDF-9-deficient oocytes and the eventual demise of the oocyte; 3) After loss of the oocyte, the cells of the GDF-9-deficient follicles remain in a steroidogenic cluster that histologically resembles small corpora lutea. However, at the molecular level, these cells are positive for both luteal markers (e.g. LHR and P-450 side chain cleavage) and nonluteal markers (e.g. inhibin alpha and P-450 aromatase). This demonstrates that initially the presence of the oocyte prevents the expression of luteinized markers, but that the absence of GDF-9 at an early timepoint alters the differentiation program of the granulosa cells; and 4) As demonstrated by staining with either proliferating cell nuclear antigen (PCNA) or Ki-67 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) labeling, the granulosa cells of GDF-9-deficient type 3b primary follicles fail to proliferate but also fail to undergo cell death. This suggests that granulosa cells of type 3b follicles require GDF-9 for continued growth and also to become competent to undergo apoptosis, possibly through a differentiation event Thus, these studies have enlightened us as to the paracrine roles of GDF-9 as well as the normal steps of granulosa cell and theca cell growth and differentiation within ovarian follicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号