首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lens crystallins isolated from the tadpole and frog lenses were compared with regard to the developmental changes of crystallin compositions. The major changes during the process of metamorphosis were (1) the total contents of alpha- and gamma-crystallins decrease from more than 70% to less than 60% and (2) one of the major beta-crystallin polypeptides increases from less than 1% to about 6% and (3) an amphibian-specific rho-crystallin also increases from about 6% to more than 10% of total soluble proteins of the lens. We have characterized the metamorphosis-dependent beta-crystallin polypeptide by peptide mapping and sequence determination of the protease-digested fragments. This polypeptide showed very high sequence homology to that of the major beta Bp-crystallin chain reported for the mammalian lenses. The changes of the relative abundance of various crystallins and the gradually-elevated levels of the expression of this beta Bp-like crystallin in the developing lens during metamorphosis may also have some bearing on the maintenance of lens stability in the adult frog lenses.  相似文献   

2.
X-ray diffraction method has been applied for comparative investigation of native structure of eye lens proteins (crystallins). X-ray diffraction patterns of the whole lenses and/or their nuclear parts were obtained for man and vertebrate animals. Crystalline lenses of the fishes Acerina cernua and Pelmatochromis kribensis, frog Rana temporaria, bull and man contain crystallins with a very similar secondary and tertiary structure, whereas lenses of chicks and the tortoise Testudo horsfieldi contain mainly crystallins with other structure. The results obtained reveal evolutionary conservatism of crystallin structure in fishes, amphibians and mammals. It was also concluded that there is no correlation between crystallin structure of the lens, elasticity of the latter and accommodation mechanism.  相似文献   

3.
The accumulation of crystallin fragments in vivo and their subsequent interaction with crystallins are responsible, in part, for protein aggregation in cataracts. Transgenic mice overexpressing acylpeptide hydrolase (APH) specifically in the lens were prepared to test the role of protease in the generation and accumulation of peptides. Cataract development was seen at various postnatal days in the majority of mice expressing active APH (wt-APH). Cataract onset and severity of the cataracts correlated with the APH protein levels. Lens opacity occurred when APH protein levels were >2.6% of the total lens protein and the specific activity, assayed using Ac-Ala-p-nitroanilide substrate, was >1 unit. Transgenic mice carrying inactive APH (mt-APH) did not develop cataract. Cataract development also correlated with N-terminal cleavage of the APH to generate a 57-kDa protein, along with an increased accumulation of low molecular weight (LMW) peptides, similar to those found in aging human and cataract lenses. Nontransgenic mouse lens proteins incubated with purified wt-APH in vitro resulted in a >20% increase in LMW peptides. Crystallin modifications and cleavage were quite dramatic in transgenic mouse lenses with mature cataract. Affected lenses showed capsule rupture at the posterior pole, with expulsion of the lens nucleus and degenerating fiber cells. Our study suggests that the cleaved APH fragment might exert catalytic activity against crystallins, resulting in the accumulation of distinct LMW peptides that promote protein aggregation in lenses expressing wt-APH. The APH transgenic model we developed will enable in vivo testing of the roles of crystallin fragments in protein aggregation.  相似文献   

4.
本文用蛋白质印迹转移技术分析了正常及硒性白内障大鼠晶状体及房水中蛋白质的性质。结果表明,晶状体中的脲溶性蛋白质可被抗α及抗γ晶体蛋白血清识别,提示α及γ晶体蛋白均为脲溶性蛋白质的主要成份。患白内障时房水中的蛋白质含量明显增加,且主要被抗γ血清识别,而被抗α血清识别的成份很少,表明在大鼠硒性白内障形成过程中,有较多低分子量蛋白质漏出到房水中,且其主要成份为γ晶体蛋白。此外,我们还发现正常及硒性白内障大鼠晶状体膜蛋白质与抗α及抗γ血清起反应的程度及分布有所不同,提示晶状体细胞膜与晶体蛋白之间存在着相互作用。  相似文献   

5.
Protein distribution patterns across eye lenses from the Asiatic toad Bufo gargarizans were investigated and individual crystallin classes characterised. Special fractionation that follows the growth mode of the lens was used to yield nine fractions corresponding to layers laid down at different chronological (developmental) stages. Proportions of soluble and insoluble crystallins within each fraction were measured by Bradford assay. Water‐soluble proteins in all fractions were separated by size‐exclusion HPLC and constituents of each class further characterised by electrophoresis, RP‐HPLC and MS analysis. In outer lens layers, α‐crystallin is the most abundant soluble protein but is not found in soluble proteins in the lens centre. Water‐soluble β‐crystallins also decrease from their highest level in the outer lens to negligible mounts in the central lens. The proportion of soluble γ‐crystallin increases significantly towards the lens centre where this is the only soluble protein present. Insoluble protein levels increase significantly towards the lens centre. In B. gargarizans lenses, as with other anurans, the predominant water‐soluble protein class is γ‐crystallin. No taxon‐specific crystallins were found. The relationship between the protein distribution patterns and the functional properties of the lens this species is discussed.  相似文献   

6.
Crystallins from carp eye lenses have been isolated and characterized by gel permeation chromatography, SDS-gel electrophoresis, immunodiffusion and amino acid analysis. gamma-Crystallin is the most abundant class of crystallins and constitutes over 55% of the total lens cytoplasmic proteins. It is immunologically distinct from the alpha- and beta-crystallins isolated from the same lens and its antiserum shows a very weak cross-reaction to total pig lens antigens. Comparison of the amino acid compositions of carp gamma-crystallin with those of bovine gamma-II, haddock gamma- and squid crystallins indicates that gamma-crystallin from the carp is very closely related to that of the haddock, and probably also related to the invertebrate squid crystallin. In vitro translation of total mRNAs isolated from carp lenses confirms the predominant existence of gamma-crystallin. The genomic characterization of carp crystallin genes should provide some insight into the mechanism of crystallin evolution in general.  相似文献   

7.
The primary function of the eye lens is to focus light on the retina. The major proteins in the lens—α, β, and γ-crystallins—are constantly subjected to age-related changes such as oxidation, deamidation, truncation, glycation, and methylation. Such age-related modifications are cumulative and affect crystallin structure and function. With time, the modified crystallins aggregate, causing the lens to increasingly scatter light on the retina instead of focusing light on it and causing the lens to lose its transparency gradually and become opaque. Age-related lens opacity, or cataract, is the major cause of blindness worldwide. We review deamidation, and glycation that occur in the lenses during aging keeping in mind the structural and functional changes that these modifications bring about in the proteins. In addition, we review proteolysis and discuss recent observations on how crystallin fragments generated in vivo, through their anti-chaperone activity may cause crystallin aggregation in aging lenses. We also review hyperbaric oxygen treatment induced guinea pig and ‘humanized’ ascorbate transporting mouse models as suitable options for studies on age-related changes in lens proteins.  相似文献   

8.
The exposure of dialyzed preparations of lens crystallins to copper (II) ions causes a decrease in protein surface thiol and the production of hydrogen peroxide (H2O2). H2O2 production by gamma and beta crystallin subfractions (which contain the greatest level of thiol) is the predominant source of this H2O2. Protein surface thiols are probable sources of H2O2 formation since N-ethyl maleimide treatment of lens proteins and zinc ions inhibit H2O2 production. These data are consistent with a hypothesis that transition metal-catalyzed oxidation of protein contributes to cataractogenic lens protein oxidations.  相似文献   

9.
J S Zigler  P V Rao 《FASEB journal》1991,5(2):223-225
Taxon-specific crystallins are proteins present in high abundance in the lens of phylogenetically restricted groups of animals. Recently it has been found that these proteins are actually enzymes which the lens has apparently adopted to serve as structural proteins. Most of these proteins have been shown to be identical to, or related to, oxidoreductases. In guinea pig lens, which contains zeta-crystallin, a protein with an NADPH-dependent oxidoreductase activity, the levels of both NADPH and NADP+ are extremely high and correlate with the concentration of zeta-crystallin. We report here nucleotide assays on lenses from vertebrates containing other enzyme/crystallins. In each case where the enzyme/crystallin is a pyridine nucleotide-binding protein the level of that particular nucleotide is extremely high in the lens. The presence of an enzyme/crystallin does not affect the lenticular concentrations of those nucleotides which are not specifically bound. The possibility that nucleotide binding may be a factor in the selection of some enzymes to serve as enzyme/crystallins is considered.  相似文献   

10.
S H Chiou 《FEBS letters》1988,241(1-2):261-264
Lens crystallins were isolated from cephalopods, octopus and squid. Two protein fractions were obtained from the octopus in contrast to only one crystallin from the squid. The native molecular mass for these purified fractions and their polypeptide compositions were determined by gel filtration, sedimentation analysis, and SDS-gel electrophoresis. Octopod and decapod lenses share one common major squid-type crystallin of 29 kDa, with one additional novel crystallin present only in the octopus lens. This newly-characterized crystallin (termed omega-crystallin) exists as a tetrameric protein of 230 kDa, consisting of 4 identical subunits of approx. 59 kDa. It is distinct from the previously known crystallins both in amino acid composition and subunit structure. N-terminal sequence analysis indicated that the omega-crystallin is N-terminally blocked, whereas the major octopus crystallin is identical to the reported squid crystallin with regard to the first 25 residues of protein sequence. Sequence similarity between this major cephalopod crystallin and glutathione S-transferase were found, which suggested some enzymatic role of crystallins inside the cephalopod lens.  相似文献   

11.
The eye lens crystallins of the octopus Octopus dofleini were identified by sequencing abundant proteins and cDNAs. As in squid, the octopus crystallins have subunit molecular masses of 25-30 kDa, are related to mammalian glutathione S-transferases (GST), and are encoded in at least six genes. The coding regions and deduced amino acid sequences of four octopus lens cDNAs are 75-80% identical, while their non-coding regions are entirely different. Deduced amino acid sequences show 52-57% similarity with squid GST-like crystallins, but only 20-25% similarity with mammalian GST. These data suggest that the octopus and squid lens GST-like crystallin gene families expanded after divergence of these species. Northern blot hybridization indicated that the four octopus GST-like crystallin genes examined are lens-specific. Lens extracts showed about 40 times less GST activity using 1-chloro-2,4-dinitrobenzene as substrate than liver extracts of the octopus, indicating that the major GST-like crystallins are specialized for a lens structural role. A prominent 59-kDa crystallin polypeptide, previously observed in octopus but not squid and called omega-crystallin (Chiou, S.-H. (1988) FEBS Lett. 241, 261-264), has been identified as an aldehyde dehydrogenase. Since cytoplasmic aldehyde dehydrogenase is a major protein in elephant shrew lenses (eta-crystallin; Wistow, G., and Kim, H. (1991) J. Mol. Evol. 32, 262-269) the octopus aldehyde dehydrogenase crystallin provides the first example of a similar enzyme-crystallin in vertebrates and invertebrates. The use of detoxification stress proteins (GST and aldehyde dehydrogenase) as cephalopod crystallins indicates a common strategy for recruitment of enzyme-crystallins during the convergent evolution of vertebrate and invertebrate lenses. For historical reasons we propose that the octopus GST-like crystallins, like those of the squid, are called S-crystallins.  相似文献   

12.
Over 95% of the dry mass of the eye lens consists of specialized proteins called crystallins. Aged lenses are subject to cataract formation, in which damage, cross-linking, and precipitation of crystallins contribute to a loss of lens clarity. Cataract is one of the major causes of blindness, and it is estimated that over 50,000,000 people suffer from this disability. Damage to lens crystallins appears to be largely attributable to the effects of UV radiation and/or various active oxygen species (oxygen radicals, 1O2, H2O2, etc.). Photooxidative damage to lens crystallins is normally retarded by a series of antioxidant enzymes and compounds. Crystallins which experience mild oxidative damage are rapidly degraded by a system of lenticular proteases. However, extensive oxidation and cross-linking severely decrease proteolytic susceptibility of lens crystallins. Thus, in the young lens the combination of antioxidants and proteases serves to prevent crystallin damage and precipitation in cataract formation. The aged lens, however, exhibits diminished antioxidant capacity and decreased proteolytic capabilities. The loss of proteolytic activity may actually be partially attributable to oxidative damage which proteases (like any other protein)_can sustain. We propose that the rate of crystallin damage increases as antioxidant capacity declines with age. The lower protease activity of aged lens cells may be insufficient to cope with such rates of crystallin damage, and denatured crystallins may begin to accumulate. As the concentration of oxidatively denatured crystallins rises, cross-linking reactions may produce insoluble aggregates which are refractive to protease digestion. Such a scheme could explain many events which are known to contribute to cataract formation, as well as several which have appeared to be unrelated. This hypothesis is also open to experimental verification and intervention.  相似文献   

13.
1. The four crystallins of the gray squirrel lens have been characterized using gel filtration chromatography, polyacrylamide gel electrophoresis, and immunoblotting. Alpha, beta-heavy, beta-light, and gamma crystallins of squirrel lenses have been identified immunologically, and they cross-react strongly with rabbit polyclonal antibodies. The gamma-24 crystallin of the squirrel lens also reacts strongly with monoclonal anti-human lens gamma-24, as shown by its inhibition of the ELISA reaction by 85%. 2. The water-insoluble urea soluble proteins represent non-covalently associated species of soluble crystallins and the lens cytoskeletal proteins. The membrane intrinsic protein in the urea insoluble pellet has a mol. wt of 27,000 but other lower and higher mol. wt components are also present, which were removed by washing with 0.1 NaOH. The N-terminal 30 amino acid of squirrel lens gamma crystallin was found to be identical to that of the bovine (and human) lens. 3. Measurements of the distribution and state of SH and SS compounds in the squirrel lens have shown greater similarities to those of primates than those of rodents. The findings show that on the basis of both protein and sulfur chemistry the squirrel lens is a representative model for studies of oxidative lens changes in diurnal animals, including man.  相似文献   

14.
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA57‐65) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
The lens-specific proteins alpha and delta crystallins and lentoid bodies, structures that follow a differentiation pathway similar to that of the lens, regularly appear after 4 to 5 weeks in quail embryo neuroretina monolayer cultures. We have investigated the effects of the avian oncogenic retroviruses Mill Hill 2 and Rous sarcoma virus on this process. Quail embryo neuroretina cells transformed by Mill Hill 2 virus were established into permanent cultures that synthesized alpha and delta crystallins and contained stem cells for the production of lentoid bodies. In contrast, transformation with the Rous sarcoma virus mutant tsNY-68 blocked the appearance of mRNA crystallins, but cytoplasmic alpha and delta crystallin mRNA and alpha crystallin appeared 44 h after a shift to the nonpermissive temperature. However, delta crystallins and lentoid bodies were only present after 7 days. The crystallins of transformed quail neuroretina cultures were immunologically indistinguishable from those of quail lenses and of normal quail embryo neuroretina cultures.  相似文献   

16.
Oxidative modification of lens crystallins by H2O2 and chelated iron   总被引:1,自引:0,他引:1  
Crystallins are the soluble structural proteins that constitute approximately 90% of the dry mass of the eye lens. The present study attempts to elucidate possible mechanisms whereby the H2O2 present in the eye could contribute to the oxidative modification of lens crystallins. The data indicate that exposure of solutions of crystallins to H2O2 and EDTA-chelated iron leads to covalent crosslinking of polypeptides, loss of intrinsic protein fluorescence, and the generation of a novel fluorophor emitting in the 420 nm range. These changes closely mimic oxidative modifications that occur in lens proteins in vivo. Exposure of the proteins to H2O2 in the absence of chelated iron failed to generate detectable levels of these modifications. These findings are contrasted with earlier studies of lenses in organ culture where H2O2 alone produced marked damage while the further addition of chelated iron protected the lenses from oxidation.  相似文献   

17.
In humans, the crystallin proteins of the ocular lens become yellow-coloured and fluorescent with ageing. With the development of senile nuclear cataract, the crystallins become brown and additional fluorophores are formed. The mechanism underlying crystallin colouration is not known but may involve interaction with kynurenine-derived UV filter compounds. We have recently identified a sulphur-linked glutathionyl-3-hydroxykynurenine glucoside adduct in the lens and speculated that kynurenine may also form adducts with GSH and possibly with nucleophilic amino acids of the crystallins (e.g. Cys). Here we show that kynurenine modifies calf lens crystallins non-oxidatively to yield coloured (365 nm absorbing), fluorescent (Ex 380 nm/Em 450-490 nm) protein adducts. Carboxymethylation and succinylation of crystallins inhibited kynurenine-mediated modification by approx. 90%, suggesting that Cys, Lys and possibly His residues may be involved. This was confirmed by showing that kynurenine formed adducts with GSH as well as with poly-His and poly-Lys. NMR studies revealed that the novel poly-Lys-kynurenine covalent linkage was via the epsilon-amino group of the Lys side chain and the betaC of the kynurenine side chain. Analysis of tryptic peptides of kynurenine-modified crystallins revealed that all of the coloured peptides contained either His, Cys or an internal Lys residue. We propose a novel mechanism of kynurenine-mediated crystallin modification which does not require UV light or oxidative conditions as catalysts. Rather, we suggest that the side chain of kynurenine-derived lens UV filters becomes deaminated to yield an alpha,beta-unsaturated carbonyl which is highly susceptible to attack by nucleophilic amino acid residues of the crystallins. The inability of the lens fibre cells to metabolise their constituent proteins results in the accumulation of coloured/fluorescent crystallins with age.  相似文献   

18.
Abstract. A certain percentage of congenitally anophthalmic mouse embryos have the ability to generate small lens vesicles that have previously been shown to produce alpha crystallin at 13-day gestation. Further immunohistological analysis of 13- and 15-day-gestation anophthalmia embryos indicates that beta crystallin is present in those 13-day embryos which have lens vesicles with lens-fiber formation. Also, 15-day embryos with lenses demonstrating fiber elongation can produce both beta and gamma crystallins. The conclusion is drawn that the genetic potential to produce at least three characteristic biochemical markers of normal lens differentiation is present in the anophthalmia mutant. The spatial distribution patterns of the crystallins in normal and anophthalmia embryos were similar. However, there appeared to be a transposition in the temporal appearance of beta and gamma crystallins in the anophthalmia mutant. Optic cups and associated lenses in 15-day anophthalmia specimens were much smaller than those in controls. The optic and lens rudiments in these anophthalmia embryos were fairly proportional in size, which indicates that some degree of allometric growth compensation had occurred during the course of development. This ability for differential growth compensation in the mouse eye appears to be restricted to the predifferentiative stages of eye formation.  相似文献   

19.
The mole (Talpa europaea; Insectivora) and the mole rat (Spalax ehrenbergi; Rodentia) both have degenerated eyes as a convergent adaptation to subterranean life. The rudimentary eye lenses of these blind mammals no longer function in a visual process. The crystallin genes, which display a lens-specific expression pattern, were studied in these blind mammals and in related species with normal eyes by hybridizing their genomic DNAs with probes obtained from cDNA clones for alpha A-, alpha B-, and beta Bp-crystallins from calf and gamma 3- crystallin from the rat. For all crystallin genes examined, the hybridization signals of mole and mole rat genomic DNA were comparable, respectively, with those of shrew and of rat and mouse, normal-vision representatives of the orders Insectivora and Rodentia. The expression of the crystallins at the protein level was tested by using antiserum specific for alpha-crystallin in immunofluorescence reactions on lens sections of mole and mole rat eyes and by using antisera against the beta- and gamma-crystallins on sections of the mole eye. All antisera gave positive fluorescence reactions exclusively with lens tissue of these blind mammals, indicating that the crystallins are still normally expressed despite the fact that these lenses have had no function in a visual process in these mammals for at least many million years. These findings apparently imply that some unknown selective advantage has conserved the crystallin genes and their expression after the loss of normal function of the lenses.   相似文献   

20.
Disulfide bonding of lens crystallins contributes to the aggregation and insolubilization of these proteins that leads to cataract. A high concentration of reduced glutathione is believed to be key in preventing oxidation of crystallin sulfhydryls to form disulfide bonds. This protective role is decreased in aged lenses because of lower glutathione levels, especially in the nucleus. We recently found that human gamma-crystallins undergo S-methylation at exposed cysteine residues, a reaction that may prevent disulfide bonding. We report here that betaA1/A3-crystallins are also methylated at specific cysteine residues and are the most heavily methylated of the human lens crystallins. Among the methylated sites, Cys 64, Cys 99, and Cys 167 of betaA1-crystallin, methylation at Cys 99 is highest. Cys 64 and Cys 99 are also glutathiolated, even in a newborn lens. These post-translational modifications of the exposed cysteines may be important for maintaining the crystallin structure required for lens transparency. Previously unreported N-terminal truncations were also found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号